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INTRODUCTION
 
Currently, biobased materials are gaining 
importance due to the need to decrease society’s 
dependency on petroleum based products 
(Goetz et al. 2009). Biopolymers (biodegradable 
polymers) may be obtained from renewable 
resources or synthesised from either petroleum-
based chemicals or microbial processes. 
Through blend of two or more biopolymers a 
new biopolymer may be designed for specific 
requirements. Originally, biopolymers were 
intended to be used in packaging industries, 
farming and other applications with minor 
strength requirements. Performance limitations 
and high production cost are major drawbacks 
for their widespread acceptance (Mohanty et al. 
2002). 
 Carrageenan is a generic name for a family 
of polysaccharides obtained by extraction from 
certain species of red seaweeds (Rhodophyta). It 
is a water soluble linear biopolymer, increasingly 
used as natural thickener, formulation stabiliser 
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or gelling agent in applications ranging from food 
industry (mainly dairy products) to pharmaceutics 
(De Velde et al. 2002). Carrageenan consists of 
alternating copolymers of α-(1→3)-D-galactose 
and β-(1→4)-3,6-anhydro-D- or L-galactose. It 
is usually classified in three industrially relevant 
types: λ-carrageenan, which is a highly sulfated 
galactan with viscosity enhancement properties; 
ι-carrageenan, which forms thermo reversible 
soft gels; and κ-carrageenan, which gives strong 
and brittle gels with water syneresis (Lahaye 
2001). 
 The starch may be extracted from plants such 
as corn, potato and cassava. It is a semicrystalline 
polymer composed of a mixture of amylose, a 
linear polysaccharide, and amylopectin, a highly 
branched polysaccharide (Avella et al. 2005). 
Starch is a promising non-wood forestry product 
due to its high availability and renewable and 
biodegradable characters (Raabe et al. 2015). 
Besides, this natural polymer presents interesting 
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properties and characteristics for processing, 
being an attractive alternative to replace the 
synthetic polymers in applications that do not 
require long periods of use (Belhassen et al. 
2014).
 Even though films made from polysaccharides 
are expected to be good oxygen and carbon 
dioxide barriers due to their tightly packed and 
ordered hydrogen-bonded network structure, 
they have poor water vapor barrier properties, 
which result from their hydrophilic nature (Alves 
et al. 2010). This drawback may be minimised by 
the addition of cellulose fibres or nanofibrils as 
reinforcement to produce new biocomposites. 
 Cellulose is a linear homopolymer composed 
of anhydroglucose units which are linked 
together by β-(1→4)-glycosidic bonds. It has 
fibrillar structure and relatively high elasticity 
modulus (Fengel & Wegener 1984, Chawla 1998). 
Plant cellulose occurs in wood, cotton, flax and 
others, the former being the most important 
resource for this purpose in the world. Cellulose 
fibres may be modified into cellulose nanofibrils 
by the following procedures: shearing forces 
(refining) ultrasonic fibrillation; high pressure 
homogenization and steam explosion (Lee et al. 
2009, Deepa et al. 2010, Chen et al. 2011, Lee et al. 
2011). The diameters of the cellulose nanofibrils 
usually depend on the source and range from 
3 to 20 nm (Sassi & Chanzy 1995). Compared 
to fibres, nanofibrils have more advantages for 
reinforcement purposes, including high surface 
area and aspect ratio (Borges et al. 2010, Lee et 
al. 2011).
 Concerning availability and cost, the high 
quality nanocomposites are produced with 
three biodegradable resources which are of 
high interest to tropical countries with rich 
biomes. In Brazil, eucalyptus extensive crops 
provide wood for utility (Bufalino et al. 2012). 
In cellulose sector, they are the main suppliers 
of bleached cellulose pulp (Tonoli et al. 
2013). In addition, tropical biomes offer many 
possibilities to obtain starch and carrageenan 
from various plant and algae species. Although 
biopolymers allow the production of cohesive 
and transparent films, there is a gap in their 
application due to high hydrophilicity (Alves 
et al. 2010, Prachayawarakorn et al. 2010). This 
study determined which of the two biopolymers 
is more resistant at high moisture conditions. The 
possibility of producing blends that may improve 
the quality of the less resistant biopolymer was 

investigated. In addition, the improvement of 
physical strength of such biopolymers by addition 
of eucalyptus nanofibrils, was quantified.
 Therefore, the first stage of this investigation 
aimed to compare the physical strength of 
starch and carrageenan films, as much as to 
determine the best proportion to produce blends 
with these biopolymers. In the second stage, 
a recommended load of eucalyptus cellulose 
nanofibrils, to produce nanocomposites with 
improved physical strength, was investigated.  

MATERIALS AND METHODS

Polymer films and blends production

Refined λ-carrageenan was provided by Agar 
Brasileiro Industria e Commercio Ltda, Brazil. 
The biopolymer was characterised with average 
diameter 250 μm, moisture content 18%, pH 
6.8 and viscosity 22 cPs. AMISOL® 3408 starch, 
provided by Corn Products Brasil Company of 
Brazil, had moisture content 11.48%, 4.8, 10 ppm 
SO2, Scott viscosity 89 (12 g 100 ml-1; base 13%), 
average diameter 17.25 μm (laser measurement) 
and amylose ± 0.43% (Guimarães et al. 2015). 
The 100% starch (0_Carr/100_Stch) and 100% 
carrageenan (100_Carr/0_Stch) films were 
made with 3% polymer (based on water mass) 
and 20% glycerol (based on polymer mass). 
The aqueous solutions were heated until 80 °C, 
after which glycerol was added and heating was 
continued for 20 min. Films were produced by 
the casting method. 40 g of solution were shed 
in 13 cm-diameter Petri dishes and dried in an 
acclimatised room at 19 °C and 63% RH for  
7 days. In order to produce blends, starch and 
carrageenan solutions were mixed at the following 
proportions: 20% carrageenan and 80% starch: 
(20_Carr/80_Stch); 50% carrageenan and 50% 
starch (50_Carr/50_Stch) and 80% carrageenan 
and 20% starch (80_Carr/20_Stch). 100 g of each 
blend were prepared.

Cellulose nanofibrils production

A Eucalyptus urophylla tree was collected from 
a Brazilian crop and peeled into veneers. 
Low-quality veneers for plywood production 
were selected as waste materials, grinded in a 
hammer mill and processed into sawdust using 
a disintegrator. The particles were sieved for 
selection of the fraction that passed through  
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60 mesh. Pre-treatments of the raw materials were 
carried out according to Bufalino et al. (2015) 
by two subsequent procedures. Firstly, the raw 
sawdust was submitted to alkali treatment in a 
digester. Parameters were as follows: pressure 
0.7 to 1.2 MPa, NaOH solution at 5% (w/w), 
sawdust to solution proportion of 1000 g 6000 ml-1,  
reaction time of 0.5 hour and reaction 
temperature of 150 °C. The fibres were then 
washed with distilled water until neutral pH. 
Secondly, alkaline treated fibres were bleached 
under mechanical stirring using the following 
parameters: H2O2 at 24% + NaOH at 4% solution 
(v/v), fibre to solution proportion of 50 g  
2000 ml-1, reaction time of 2 hours and 
temperature of 60 °C.  The fibres were washed 
once again with distilled water until neutral 
pH. The bleached fibres were immersed in 
distilled water at a proportion of 1% (w/w). The 
fibres were then submitted to nanofibrillation 
in a Super Mass Coloider Grinder with an 
opening between disks of 0.01 mm and rotation  
1600 rpm. The suspension was passed through 
grinder forty times.

Nanocomposite production

The composites were developed with the  
0_Carr/100_Stch, 100_Carr/0_Stch and 20_
Carr/80_Stch matrices. The 20_Carr/80_Stch 

composition was selected among other blends of 
the previous stage of the work due to its higher 
strength at high moisture conditions. Nanofibril 
suspensions at 8.5% of consistency were applied  
to heating at 10, 20 and 30% (w/w) loads based 
on starch and carrageenan masses, following 
the same procedures described above. Nine 
composite samples were developed and tested 
(Table 1).

Analyses description

Scanning electron microscopy (SEM) photographs 
of the raw and bleached fibres were taken using 
a scanning electron microscope,  acceleration 
voltage 10 kV. All samples were previously 
sputter coated with gold before examination. For 
transmission electron microscopy (TEM) analysis 
of nanofibrils, an EM 109 instrument was used. 
Two droplets of each nanofibril suspensions 
were diluted in 50 ml of water and sonified 
for 20 min. One droplet of each homogenised 
suspension was deposited on a cupper microgrid 
with Formvar (400 mesh) and allowed to dry. 
The grids were stained with a 1.5% solution of 
uranyl acetate and lead citrate, and dried at room 
temperature. Physical tests were carried out for 
polymer films, blends and composites with three 
replicates. The water absorption test followed 
ASTM E 104-85 (ASTM 1991), performed in a 

Table 1  Composition of the starch and carrageenan in films and composites

Sample Nanofibril load 
(%)

Carrageenan/starch proportion 
(%)

100_Carr/0_Stch + 0% NF 0

100/0
100_Carr/0_Stch + 10% NF 10

100_Carr/0_Stch + 20% NF 20

100_Carr/0_Stch + 30% NF 30

20_Carr/80_Stch + 0% NF 0

20/80
20_Carr/80_Stch + 10% NF 10

20_Carr/80_Stch + 20% NF 20

20_Carr/80_Stch + 30% NF 30

0_Carr/100_Stch + 0% NF 0

0/100
0_Carr/100_Stch + 10% NF 10

0_Carr/100_Stch + 20% NF 20

0_Carr/100_Stch + 30% NF 30

 Carr = carrageenan, Stch = starch, NF = nanofibril load
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controlled environment at 19 °C and 100% RH, 
in a desiccator.  For each film type, two specimens 
were cut with a 3 cm-diameter circular steel mold. 
The samples were placed in an oven at 70 °C for 
24 hours and subsequently weighed. Samples 
were weighed after 1, 2, 3, 4, 5, 24, 48, 72 and 
96 hours, considering the starting moment they 
were placed in the desiccator. The amount of 
water absorbed was estimated for each period 
by equation 1:

 WA = Mc – Mi

Mi
 100 (1)

where WA = water absorption (%), Mc = current 
mass (g) and Mi = dry mass (g).
 The water solubility of the fi lms was 
determined according to the Gontard et al. 
(2007) in circular specimens with diameters of  
2 cm. Triplicates were evaluated for each film 
type. The initial dry mass was obtained after 
drying at 55 ± 2 °C for 24 hours. The specimens 
were immersed in 40 ml of distilled water for 
24 hours at room temperature. The resulting 
suspensions were filtered, dried at 105 °C for 
24 hours and weighed. The solubility of films 
was expressed as percentage of solubilised mass 
in relation to the initial mass according to the 
equation 2:

 S = Md – Ms

Md
* 100  (2)

where S = solubility (%), Ms = nonsolubilised 
mass (g) and Md = dry mass (g).
 The water vapor permeability rate and water 
vapor permeability of the films were determined 
in duplicates by gravimetric parameters according 
to ASTM E 96-00 (ASTM 2000) and literature 
(Bourtoom & Chinnan 2008, Guimarães et al. 
2015). Circular specimen of 10.5 mm of diameter 
were cut with steel molds and placed in amber 
glass with 3/4 of its volume containing silica gel 
(desiccant) with particle size ranging from 1 to 
4 mm, previously dried in an oven at 150 °C for 
24 hours. Recipient’s dimensions were 10 mm of 
top diameter, 58 mm of length and 26 mm of base 
diameter. The covers had height and diameter 
of 18 nm and 20 mm, respectively. They were 
perforated at the top with the same dimensions 
of the glass permeation area. The specimens were 
placed between the glass and cover.
 The specimens were kept in an environment 
with zero water activity. The recipients were 

placed in sealed desiccators at 18.5 ± 2 °C filled 
with 800 ml of water, giving 0.1 atmospheric 
water activity in contact with the upper surface 
of the specimens. Mass gain measurements 
were conducted by weighing the specimen at a 
precision of 0.0001 g, every 24 hours for 7 days. 
The water vapor permeability rate of the films was 
estimated using linear regression between weight 
gain (g) and time (24 hours). The slope of the 
linear part of the curve represented the amount 
of water vapor diffusion through the specimen 
per unit time (g hour-1). The water vapor 
permeability rate was expressed by equation 3. 
After determining the saturated vapor pressure 
of water at test temperature by equation 4, 
water vapor permeability was determined by  
equation 5.

 WVPR =
g

T  A    (3)

 sp = 0.6108e
17,27  T
T + 237,3  (4)

 WVP =
WVPR  t

Rh Rhi
100 100

sp –sp
 (5)

where sp = saturated vapor pressure of water at 
test temperature 18.5 °C (kPa), T = conditioning 
temperature (18.5 °C) of the desiccator 
containing cells with biofilms and distilled 
water, WVPR = water vapor permeability rate 
(g hour-1 m-2), g T-1 = slope of the line obtained 
by linear regression of mass gain (g) in relation 
to conditioning time (h),  A = permeation area 
of each specimen  (m2), WVP = water vapor 
permeability  (g mm KPa-1 day-1 m-2),  t = thickness 
of the specimen (mm), sp = saturated vapor 
pressure of the water at testing temperature 
18.5 °C (kPa), Rhi = relative humidity inside the 
glass containing silica gel white equals to 0 % 
and Rh = relative humidity inside the desiccator 
containing distilled water (100 %). The sp was 
calculated according to equation 5 (Tetens 1930). 
Through diameter and thickness, the volume of 
the samples was calculated and the density was 
determined in duplicates using equation 6:  

 d = m
v  (6)

where d = density (g cm-3), m = is the mass (g) 
and v = volume (cm3).
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RESULTS AND DISCUSSION

Physical properties of carrageenan and 
starch films and blends

Density of the films varied from 1.11 to 
1.44 g cm-3. The films with 80 and 100% 
starch showed higher average density values 
(Figure 1). The density of a polymer is related 
to its  chemical composition, molecular 
weight (single molecules) and the way the 
molecules are arranged (crystalline structure) 
(Sarantópoulos et al. 2002). Although lower 
density was found for 50_Carr/50_Stch blend, 
intermediate results found for 80_Carr/20_
Stch and 20_Carr/80_Stch showed that starch 
had higher density. 

 The water uptake of polymers during 
exposure to distilled water versus time was 
analysed (Figure 2). Higher water uptakes 
are usually related to higher susceptibility to 
biodegradation of biopolymers (Chiu et al. 2009). 
The increase in the starch content clearly reduces 
water absorption by films, hence starch is less 
hydrophilic than carrageenan. In starch films, 
the solubilised amylose molecules, due to their 
linearity, are parallel and get close enough to 
form hydrogen bonds between hydroxyl groups 
of adjacent polymers. As a result, the affinity 
with water is reduced in comparison to powder 
starch (Wurzburg 1986). The carrageenan high 
hydrophilic character is attributed to sulfate 
groups with high ionisation tendency (Pourjavadi 
et al. 2004). 

Figure 2 Patterns of water absorption rate of the starch and carrageenan films and blends; Carr = carrageenan, 
Stch = starch
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 Starch films (0_Carr/100_Stch) absorbed up 
to 80% of water and stabilisation was achieved 
around 30 hours. Oppositely, carrageenan 
(100_Carr/0_Stch) had absorption values above 
160% and stabilisation was not reached before 
70 hours. Intermediate results of absorption 
may be observed for all blends and stabilisation 
was reached around 50 hours. The water vapor 
permeability of starch films (0_Carr/100_Stch) 
was much lower than that found for carrageenan 
films (100_Carr/0_Stch) as depicted in Figure 
3. Differences in water vapor permeability may 
be related to the difference in water molecule 
diffusion and hydrophilic to hydrophobic ratio 
(Garcia et al. 2000). The greatest affinity of 
biopolymers for water molecules results in higher 
water diffusion, giving films higher water vapor 
permeability, as found for 100_Carr/0_Stch 
samples.  
 Similar water vapor permeability values were 
found for 80_Carr/20_Stch and 50_Carr/50_
Stch samples. However, 20_Carr/80_Stch blend 
showed much lower water vapor permeability 
than the other blends. In comparison to starch 
films (0_Carr/100_Stch), the addition of another 
biopolymer leads to interaction with starch 
chains, breaking their intact network of inter 
chain hydrogen-bonding. Therefore, blends 
are a possibility to improve the performance 
of carrageenan films with poor water vapor 
permeability.
 All samples showed poor resistance to water 
solubility with values above 98% (Figure 4). 
This is attributed to the hygroscopic nature of 
the biopolymers. Starch films (0_Carr/100_

Stch) and blends containing higher amount 
of biopolymer (20_Carr/80_Stch) showed 
lower solubility possibly due to their higher 
density. For packaging applications, high water 
solubility of starch is a disadvantage (Carvalho 
et al. 2001, Prachayawarakorn et al. 2010). On 
the other hand, for drug release applications, 
high water solubility is desirable (Monterrey-
Quintero & Sobral 2000). Considering packaging 
applications, 20_Carr/80_Stch was selected 
among blends for the production of nanofibrils 
reinforced composites.

Morphological quality of raw fibres, bleached 
fibres and nanofibrils
 
Morphological analysis by scanning electron 
microscopy revealed that raw sawdust consisted 
of fibre bundles, and the presence of amorphous 
non-cellulosic components may be attested in fibre 
surface (Figure 5a). Alkaline pretreatment with 
NaOH dissolves lignin, and the bleached fibres 
provide whiter products with lower amounts of 
impurities and improved resistance to yellowing 
(He et al. 2010). Therefore, individualised and 
free-from-impurities of bleached fibres were 
obtained after pre-treatments, as observed by 
the scanning electron microscopy (Figure 5b).
 Eucalyptus nanofibrils were successfully 
produced, as observed by transmission electron 
microscopy (Figure 5c). Nanofibrils usually 
exhibit diameters of less than 100 nm and lengths 
of several micrometers, thus having a large aspect 
ratio that increases hydrogen bonding capacity 
(Syverud et al. 2011, Tonoli et al. 2013).

Figure 3  Water vapor permeability (WVP) of the starch and carrageenan films and blends; Carr = carrageenan, 
Stch = starch
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Physical properties of carrageenan and 
starch nanocomposites
 
Higher loads of nanofibrils resulted in a 
remarkable increase of density (Figure 6). 
Moreover, nanocomposites reinforced with 10, 
20 or 30% of nanofibrils showed greater strength 
than non-reinforced films and blends. The denser 
structure and reduced porosity of nanocomposite 
films are due to the rigid hydrogen-bonded 
network among cellulose nanofibrils and the 
combination between nanofibrils and matrix 
(Samir et al. 2005, Saxena et al. 2010). Overall 

analysis showed that higher proportions of starch 
combined with lower proportions of carrageenan 
and higher proportions of nanofibrils resulted 
in lower water absorption of the films (Figure 
7). Although it is known that cellulose is highly 
hydrophilic, it is less hydrophilic than starch 
(Bodîrlău et al. 2013). Besides, cellulose semi-
crystalline structure decreases water absorbency 
in nanocomposites (Ghanbarzadeh & Almasi 
2011).
 The water absorption curves showed two 
distinct phases. Before 24 hours absorption, 
kinetics was very fast. However, after 48 hours, the 

Figure 4     Water solubility of the starch and carrageenan films and blends; Carr = carrageenan, Stch = starch  

Figure 5     SEM micrographs of the raw fibres (a) and bleached fibres (b) and TEM micrographs of de nanofibrils (c)

(b)

(a)

(c)
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pattern was of slow kinetic absorption followed 
by equilibrium moisture content. Despite 
nanofibril addition, carrageenan matrices showed 
higher water absorption (100_Carr/0_Stch). 
Composites reinforced with nanofibrils may be 
applied as packaging mostly due to adequate 
barrier properties against oxygen and fat, unlike 
synthetic plastics. However, they are unlikely to 
resist high humidity due to their hydrophilic 
nature (Aulin et al. 2010). This effect possibly 
may be minimised by chemical modification of 
the material surface or coatings formed by the 
use of multiple layers of coupled nanocelulose 
with resins (Spence et al. 2010, Chun et al. 2012).
 The increase of nanofibril content substantially 
decreased water solubility. Unlike non-reinforced 
films and blends, nanocomposites reinforced 
with 10, 20 and 30% nanofibrils did not solubilise 
(Figure 8). This is mainly attributed to the 
character of cellulose, a relatively stable polymer 
that does not readily dissolve in water (Lan et al. 
2011). Moreover, starch is able to form hydrogen 
bonds with the hydroxyl and carboxyl groups 
of cellulose, and this strong structure could 
reduce the diffusion of water molecules into the 
materials (Ghanbarzadeh et al. 2010), hence 
reduce solubility. This may be associated with the 
good interaction between matrix and nanofibrils 
which prevented the polymers from being 
dissolved. The increased solubility with addition 
of coconut fibre in corn gluten polymers and 
polyhydroxybutyrate-co-valerate was attributed to 

poor adhesion of fibres and matrix (Corradini et 
al. 2014). As a consequence of low solubility of 
cellulose and good adhesion between nanofibrils 
and matrix, the lowest value was observed for 
0_Carr/100_Stch + 30% NF composites.
 Water vapor permeability of nanocomposites 
remarkably decreased with higher additions of 
nanofibrils, mainly compared to non-reinforced 
films as showed in Table 2. The reduction of  water 
vapor permeability is due to strong hydrogen 
bonds between nanofibrils and hydrophilic 
matrix. Hence, nanofibrils increase bulk density 
and decrease voids in polymeric matrix, resulting 
in tortuosity and hinder transmission of fluids 
(Beck-Candanedo et al. 2005, Müller et al. 2008, 
Saxena et al. 2010). 
 The water vapor permeability of plasticised 
hydroxypropylmethyl cellulose (HPMC)-coated 
films was 1.7 g mm m-2 day-1 kpa-1 at 40 °C and 
75% RH (Laboulfie et al. 2013), which is much 
higher than those found in this study. The LDPE 
polymer, often used in the production of plastic 
bags and agricultural sector, have water vapor 
permeability of only 0.11 g mm m-2 day-1 kpa-1  
(40 °C, 75% RH), but is not biodegradable and 
has poor mechanical strength (Laboufie et al. 
2013, Guimarães Junior et al. 2015).

CONCLUSIONS

Both carrageenan and starch are environmentally 
friendly alternatives to petroleum-based polymers 

Figure 6  Density of the non-reinforced films and blends (0% NF) and nanocomposites reinforced with 
different loads cellulose nanofibrils (10% NF, 20% NF and 30% NF); Carr = carrageenan, Stch = 
starch, NF = nanofibril load
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that allow to produce thin films by the casting 
method. Nevertheless, their hydrophilic nature 
decrease physical strength which may hinder 
application possibilities. This work proved that 
carrageenan is far more hydrophilic than starch, 
hence the addition of carrageenan to starch 
should be up to 20%, if better physical strength 
for packaging purpose is required. 

 The addition of cellulose nanofibrils provided 
a substantial improvement of all physical 
properties in nanocomposites. The increase 
of nanofibrils from 10 to 30% decreased water 
solubility and absorption, while density increased. 
However, this trend was not observed for water 
vapor permeability. A 10% load of nanofibrils 
was enough to remarkably decrease water vapor 

Figure 7  Patterns of water absorption of the non-reinforced films and blends (0% NF) and nanocomposites 
reinforced with different loads of cellulose nanofibrils (10, 20  and 30% NF); Carr = carrageenan, 
Stch = starch, NF = nanofibril load
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permeability in relation to non-reinforced 
films and blends. The composites developed 
with a matrix of starch/carrageenan added at 
a proportion of 20 to 80% reinforced with 30% 
cellulose nanofibrils showed the highest strength 
in high moisture conditions among samples that 
combined the three bioresources. 
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