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L-BAND SATURATION LEVEL FOR ABOVEGROUND BIOMASS 
OF DIPTEROCARP FORESTS IN PENINSULAR MALAYSIA

HAMDAN O, MOHD HASMADI I, KHALI AZIZ H, NORIZAH K & HELMI ZULHAIDI MS. 2015. L-band 
saturation level for aboveground biomass of dipterocarp forests in Peninsular Malaysia. This study was 
carried out in lowland and hill dipterocarp forests over the entire Peninsular Malaysia to determine the 
saturation level of aboveground biomass (AGB) that can be retrieved using L-band synthetic aperture 
radar (SAR) data. Mosaics of Phase Array Type L-Band SAR (PALSAR) onboard Japanese Advanced Land 
Observing Satellite (ALOS) were used. Fine-beam dual PALSAR mosaic in horizontal–horizontal(HH) and 
horizontal–vertical (HV) polarisations with spatial resolution of 25 m were acquired for year 2010. A total 
of 284 sample plots of AGB were measured on the ground in 2011 and 2012. Pixel-based regression was 
performed by correlating the AGB of sample plots with the corresponding backscatter on PALSAR data. 
AGB was estimated on 4.7 mil ha of forests. The backscatter on HV polarisation gave better estimation than 
HH. The HV backscatter showed good relationship with AGB at < 200 Mg ha-1 and tended to saturate at 
200 Mg ha-1. About 1.65 billion Mg of AGB was found intact in the study area. The AGB ranged from 21 to 
578 Mg ha-1 with average of 342 Mg ha-1. A spatially distributed map of AGB was produced.
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INTRODUCTION

Tropical forest biomass is one of the crucial 
elements in addressing issues on climate change 
with regard to carbon cycle. Retrieving forest 
biomass information for large areas has been 
challenging due to limited data resource, 
accessibility, complex forest ecosystem and other 
technical issues. However, for large area coverage, 
remote sensing has been proven effective, thus, 
widely used for forest biomass estimation. Optical 
and synthetic aperture radar (SAR) systems 
have potentials in retrieving aboveground 
biomass (AGB). Both offer specific advantages, 
challenges and limitations for producing reliable 
estimate at given scales (Lu 2006). In tropical 
forests, issues such as cloud cover, complex forest 
ecosystem and saturation at certain biomass 
levels remain unanswered and are continually  
being studied.

In the context of AGB estimation, optical 
systems have problems in tropical forests 
(Nichol & Sarker 2011). Spectral reflectance 

and vegetation indices alone are not reliable 
indicators of AGB in tropical forests and 
the direction of their relationship is also 
inconsistent (Foody et al. 2003). Cloud cover is 
also one of the critical challenges in the tropics 
(Asner 2001). SAR, on the other hand, offers 
a different alternative in estimating AGB. The 
capability of SAR system to penetrate through 
the canopy has contributed to advancements 
in forestry applications. The interest in SAR 
for monitoring forest cover arises from two 
advantages: SAR can provide information 
related to canopy volume and has possibility 
to acquire data over areas with frequently free  
cloud cover.

Among the many SAR systems available, 
L-band has potential for forest AGB estimation 
as it carries mainly information about larger 
components of vegetation such as trunks and 
branches (Imhoff 1995, Wolter & Townsend 
2011). Phases Array Type L-Band SAR (PALSAR) 
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has been the only satellite-based system (after the 
Japan Earth Resources Satellite, JERS-1) capable 
of acquiring data at L-band, which is suitable for 
forest biomass studies. The L-band backscatter is 
sensitive and can be related to the growth stage 
and biophysical parameters of a forest (Le Toan 
et al. 2004, Shi et al. 2012). Although L-band 
SAR system offers some advantages in estimating 
AGB, the saturation problem is common in 
radar data. It means that the sensitivity of the 
backscatter will cease at certain level of AGB. 
This was identified as a critical challenge in the 
last decade (Lu 2006).

Since PALSAR was operational from 2006 
until 2011, many attempts have been made 
to address the above issues and assess AGB of 
various forest ecosystems at adequate accuracies. 
Many studies demonstrate that PALSAR has 
great potential in estimating vegetation biomass 
because it can penetrate further into vegetation. 
A number of AGB retrieval strategies were 
adopted, ranging from empirical (Lucas et al. 
2010, Sandberg et al. 2011) and semi-empirical 
(Santoro et al. 2009) to more recently numerical 
models (Burgin et al. 2011). The empirical 
models have related radar backscatter to AGB 
using a range of functional forms, including 
linear (Sandberg et al. 2011), logarithmic and 
exponential (Englhart et al. 2011, Hamdan et 
al. 2011) as well as higher degree polynomials 
(Dobson et al. 1992). Rule-based algorithms 
adapted to regression problems were also used 
for the retrieval of bio-geophysical parameters 
from polarimetric SAR data (Neumann et al. 
2012, Sarker et al. 2012). Although agreement 
of the best models for biomass retrieval has yet 
to be reached, parametric models are frequently 
used (Saatchi et al. 2011, Sandberg et al. 2011,  
Robinson et al. 2013).

However, these studies were conducted in 
forest ecosystems different from Malaysia. In 
Malaysia, there are limited studies on applications 
of PALSAR for estimating biomass (Morel 
et al. 2011, 2012, Hamdan et al. 2011, 2013, 
2014a, 2014b). This indicates that the potential 
and limitations of PALSAR data in estimating 
AGB in Malaysia are not fully exploited. This 
study was conducted with the objectives of (1) 
determining the saturation level of AGB and 
(2) investigating the potential application of 
PALSAR for AGB estimation in dipterocarp 
forests in Peninsular Malaysia.

MATERIALS AND METHODS

Study area

The dipterocarp forests comprise lowland, 
hill and upper hill, which are categorised 
based on land altitude, i.e. < 300, 300–750 
and 750–1200 m respectively. The study 
area comprises lowland and hill dipterocarp 
forests, occupying about 4.7 million ha or 81% 
of the total forested land (5.8 million ha) in 
Peninsular Malaysia. These forests embrace all 
the well-drained primary forests of the plains, 
undulating land, and foothills and hilly terrain 
up to about 750 m altitude. Trees from the 
family Dipterocarpaceae are dominant species. 
Almost the entire area is categorised as gazetted 
reserve forest which is meant for production 
and protection. About 1.98 million ha have 
been allocated for protection forests in the 
form of national parks, wildlife sanctuaries 
and nature reserves (FDPM 2011). The most 
common tree species found in this forest come 
from the genera Shorea, Hopea, Dipterocarpus, 
Dryobalanops, Neobalacarpus, Anisoptera and Vatica. 
Figure 1 shows the distribution of lowland and 
hill dipterocarp forests at the study area.

Satellite and supporting data

ALOS PALSAR, an enhanced successor of 
the JERS-1 SAR was launched from JAXA’s 
Tanegashima Space Center in January 2006. 
After about 4.5 years of operation, it stopped 
in April 2011. PALSAR data was in the form of 
L-band SAR (1270 MHz, 23.62 cm wavelength), 
dual-polarised mode. The PALSAR images used 
in this study consisted of a 1 × 1 degree mosaic 
tiles form a global PALSAR mosaic from 2010 
(Shimada & Ohtaki 2010). It was supplied by the 
Remote Sensing Technology Center of Japan 
within the framework of the Kyoto and Carbon 
Initiative. A tile product consists of two bands 
in horizontal–vertical (HV) and horizontal–
horizontal (HH) polarisations at 25 m spatial 
spacing, geometrically corrected and normalised 
for topography. It also contained additional 
ancillary image data layers with information 
about acquisition dates, local incidence angle and 
a water- and no-data mask. From this information, 
it was calculated that at least 53 individual 
scenes (within 60 km × 60 km) were acquired 
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between May and December 2010, and were 
used to produce the mosaics of Peninsular  
Malaysia (Figure 1).

Supporting data was the Landuse Map of 
Peninsular Malaysia (scale 1: 750,000) over the 
year 2010. This map was acquired from the 
Department of Agriculture Peninsular Malaysia. 
The map was scanned, geometrically corrected 
and used as a reference layer in classification 
process. Another supporting data was the digital 
elevation model acquired from the Shuttle Radar 
Topography Mission (SRTM). This data were 
used to classify the forest into specified elevation 
categories according to forest types.

Forest survey data

A total of 352 sample plots measuring 30 m × 
30 m were established in 2011 and 2012. Of 
the total plots, 284 plots were used for training 
in modelling process and the remaining 68 
plots were reserved for validation process. The 
forest survey was conducted in a number of 
field trips that covered mainly the central parts 
of Peninsular Malaysia. The states included 

Terengganu, Pahang, Johore, Negeri Sembilan, 
Selangor, Perak, Kelantan and Perlis. In each 
plot, all trees with diameter at breast height 
(dbh) of 5 cm and above were inventoried. 
Species for every stand was recorded. A plot 
was divided into four quarters and position 
(coordinate) was recorded at the centre of the 
plot using global positioning system. Locations 
of the sample plots are shown in Figure 1 and a 
summary of the sample plots is given in Table 1.

The AGB for each plot was calculated based 
on allometric equation that was developed for 
lowland dipterocarp forest (Kato et al. 1978).

1/H = 1/(2.0 × D) + 1/61		  (1)

Ms = 0.0313 × (D
2
H)			   (2)

Mb = 0.136 × Ms

1.070			   (3)

1/Ml = 1/(0.124Ms

0.794
) + 1/125	 (4)

where H = total tree height (m), D = dbh (cm), 
Ms, Mb, and Ml = dry mass of stems, branches 
and leaves respectively. The AGB of a tree is a 

Figure 1 	 (a) Mosaic of PALSAR images displayed in HV (horizontal–vertical) polarisation and (b) map 
showing the study area—lowland and hill dipterocarp forests of Peninsular Malaysia 

(a) (b)
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summation of Ms, Mb and Ml calculated based on 
equations 1–4. It is usually reported in kg per tree. 
However, it was converted to per hectare basis 
and reported in Mg ha-1 in this paper.

Methodology

This study integrated forest survey data with the 
PALSAR images. In performing this, sample 
plots data were gathered and AGB was calculated 
prior to image analysis. Analysis conducted 
involved four major steps, namely, (1) image pre-
processing, (2) forest–non-forest classification, 
(3) correlation analysis and (4) validation.

Image pre-processing

The ALOS PALSAR image that was used in this 
study was built on a 16-bit data type and all 
pixels had digital numbers (DN) ranging from 
0–65,535. These DNs, however, did not represent 
the radar signal of features or objects on the 
ground. Therefore, the DN had to be converted 
to backscatter (i.e. the returned radar signals) 
known as Normalised Radar Cross-Section 
(NRCS) and represented in decibel (dB). The 
equation that was used for the calculation of 
NRCS for PALSAR was slightly different from 
other sensors in that the usual sine term had 
already been included in the DN values. Thus, 
for the products stored at level 1.5 and above, 
including mosaic product, the equation for 
NRSC of any of the polarisation component 
can be obtained by the following formula with 
single calibration factor, which can be expressed 

as equation 5 for distributed scatterers (Shimada 
et al. 2009).

NRCS (dB) = 10 × log10 (DN2) – 83   (5)

Forest–non-forest classification

Forest–non-forest classification was performed 
on HV polarisation of the images to delineate 
forests from other landuses. This process is 
critical to define the boundary of forests and 
to ensure that the estimated AGB does not 
include other types of vegetation. The reason 
is that forests are often confused with rubber, 
teak and other timber tree plantations, which 
are common in Peninsular Malaysia and they 
appear almost identical on both HH and HV 
polarisation images. To minimise error associated 
with misclassification, image enhancement was 
applied to the images. Instead of using only 
the original backscatter from HH and HV 
polarisations, an attempt was made to manipulate 
the backscatter. Polarisation manipulation 
was done using (1) simple polarisation ratio, 
(2) polarisation average and (3) polarisation 
multiplication, as summarised in Table 2. The 
plantations are normally homogenous and 
uniform. Therefore, these manipulations were 
able to separate plantations from natural forests. 
The boundaries of forests were produced from 
this process.

The forests were further classified into 
several forest types using digital elevation 
model  (DEM) acquired from SRTM. 
The DEM was threshold into two classes, 

State No. of plots Total plots Total area
(ha)Lowland dipterocarp Hill dipterocarp

Perlis 8 2 10 0.90

Terengganu 56 22 78 7.02

Pahang 57 18 75 6.75

Johore 6 0 6 0.54

Negeri Sembilan 44 14 58 5.22

Selangor 42 32 74 6.66

Perak 23 7 30 2.7

Kelantan 9 12 21 1.89

Total 245 107 352 31.68

Table 1	 Summary of sample plots
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which were < 300 m and 300–750 m that 
represented lowland and hill dipterocarp  
forests respectively.

Correlation analysis

The backscatter values of PALSAR were extracted 
from the images, both from the HH and HV 
polarisations. The AGB values at the sample 
plots on the ground were correlated with the 
corresponding backscatter values of HH and 
HV polarisations using linear regression. This 
process produced several empirical models 
that were used to retrieve AGB over the whole 
study area. The estimation models used AGB as 
independent variable to observe the sensitivity 
of the backscatter to the AGB. The relationship 
between backscatter and AGB is commonly 
represented in logarithmic function as y = a × 
ln(x) + b, where x and y = AGB and image variable 
respectively, and a and b = model coefficients.

Validation

Similar to the sampling process, validation was also 
carried out in intervals. A total of 68 validation 
plots, which contained AGBs ranging from 73.5 to 
430.4 Mg ha-1 were used to validate the estimates. 
The root mean square error (RMSE) of each 
estimation model was calculated based on these 
validation plots. An absolute accuracy—a measure 
of the error between the predicted AGB from the 
PALSAR images and the actual AGB measured 
on the ground—was calculated for all prediction 
models. Absolute accuracy is expressed as RMSE:

(6)

where n = the number of validation plots, AGBi = 
measured biomass at plot i, AGB'

i = derived/
predicted biomass at position i and μ = average 
of biomass difference.

To further investigate factors contributing 
to this RMSE, a scatterplot of observed AGB 
against  predicted AGB was produced using the 
same validation plots.

RESULTS AND DISCUSSION

Summary of forest survey data

In normal practice, trees that have dbhs 10 cm 
and above are considered for carbon accounting 
in a forest ecosystem (IPCC 2007). However, 
certain amount of AGB will be missed if smaller 
trees are not included, especially when the study 
area is large (Baccini et al. 2008). Therefore, 
trees of dbh 5 cm and above were inventoried 
in this study. It was found that smaller trees 
(dbh 5.0–9.9 cm) actually occupied only about 
3% of the total AGB in a hectare of dipterocarp 
forests (Table 3). However, trees under this 
category were plenty in terms of number. 
Table 3 summarises all measured trees in a total 
of 31.68 ha of sample plots. Figure 2, on the 
other hand, shows the relationship between the 
number of trees and AGB in a hectare of forest. 
The AGB was actually stored in huge trees with 
dbh 40 cm and above. Although the number of 

HH = horizontal–horizontal, HV = horizontal–vertical

Polarisation 
manipulation

Description

HV An image containing pixel values of original backscatter (σ, dB) from HV polarisation

HH An image containing pixel values of original backscatter (σ, dB) from HH polarisation

HH/HV Simple ratio generation by dividing HH to HV polarisations (unitless)

HV/HH Simple ratio generation by dividing HV to HH polarisations (unitless)

(HH + HV)/2 Average of HH and HV (unitless)

√(HH × HV) Squared root of HH and HV multiplicative product (unitless)

Table 2 	 Image variable used for forest classification



© Forest Research Institute Malaysia 393

Hamdan O et al.Journal of Tropical Forest Science 27(3): 388–399 (2015)

huge trees was low, the amount of AGB within 
these trees was large.

The forest–non-forest classification

The classification that was carried out over 
the original HH and HV polarisations and 
all the manipulations found that PALSAR 

images had different capabilities in defining  
forests. The backscatter values generally ranged 
from -16 to -8 dB and -11 to -4 dB for HV and HH 
polarisations respectively for dipterocarp forest. 
The accuracy of classification was checked using 
similar sample plots as used for AGB sampling. 
HV polarisation alone defined the forests at 
91.8% accuracy, but the classification accuracy 

Table 3 	 Average number of trees and AGB in a hectare of sample plots

Dbh = diameter at breast height, AGB = aboveground biomass

Dbh class
(cm)

No. of trees
(count ha-1)

No. of trees
(%)

AGB
(Mg ha-1)

Percentage AGB
(%)

5.0–9.9 633 53.6 11.5 3.2

10.0–19.9 314 26.6 43.8 12.2

20.0–29.9 117 9.9 61.3 17.1

30.0–39.9 53 4.5 63.0 17.6

40.0–49.9 34 2.9 75.6 21.1

≥ 50.0 29 2.5 103.0 28.7

Total 1180 100 358.2 100

Figure 2 	 Scatterplots of correlations between backscatter and AGB on (a) HV and (b) HH polarisations; 
AGB from all sample plots were segregated into intervals (1) < 200 Mg ha-1, (2) > 200 Mg ha-1 
and (3) overall sample plots; AGB = aboveground biomass, HH = horizontal–horizontal,  
HV = horizontal–vertical

a1

b1 b2 b3

a2 a3
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was improved slightly (at 93.2%) when the 
√(HH × HV) manipulation was used. While HH 
polarisation was sensitive to object orientation, 
HV was more sensitive to object roughness. 
Therefore, HH interprets plantation areas that 
have systematic arrangement and homogenous 
canopies better than HV. HV has very good 
response towards natural forest canopies that 
are more complex than plantations. Therefore, 
a combination of both polarisations was able 
to delineate forest from other plantations and 
thus improved the classification accuracy. The 
study introduced a new image enhancement 
technique for forest cover classification. 
Misclassification was spotted at the edges of forest 
or at the transitional areas between forest and 
agricultural crops, where pixels were confused 
by the surrounding landuse classes such as 
rubber and mature oil palm plantations. It was 
found that HH polarisation alone as well as 
other manipulations did not perform well at 
delineating forests from other features. The 
results indicates that the L-band PALSAR data 
is a good system to be utilised for large-area 
mapping of dipterocarp forests. The only 
reason is that the L-band backscatter is strong 
when it interacts with canopies of dipterocarp 
forests. The classification results combined 
with the DEM from SRTM had been used for 
delineating lowland and hill dipterocarp forests. 

The study found these forests occupied about 
4.7 mil ha in Peninsular Malaysia as summarised  
in Table 4.

Aboveground biomass estimation

Table 5 lists all empirical models that have been 
generated from regressions. Correlations between 
AGB and backscatter in HV and HH polarisations 
were constructed separately. In addition, the 
AGB from sample plots was separated into two 
intervals, < 200 and ≥ 200 Mg ha-1. An overall 
scatterplot was also generated to observe 
the overall response of backscatter to the 
AGB. Figure 2 shows the scatterplots of these 
correlations.

Based on the correlations, the backscatter 
of HV polarisation gave better r2 compared with 
the HH. The HV backscatter ranged from -16 
to -10 dB and the saturation point concentrated 
within the range -13 to -11 dB (Figure 2). Rapid 
increment could be seen especially at lower 
biomass level (i.e. up to 200 Mg ha-1) and 
decreased towards higher AGB. The trend line 
became almost constant at about -12 dB when the 
AGB exceeded 200 Mg ha-1. The errors associated 
with estimation models are represented by 
residual errors which measure the deviation 
of AGB values from the best-fit line (Table 5). 
Errors were larger at AGB > 200 Mg ha-1. The 

Forest type Lowland dipterocarp forest
(ha)

Hill dipterocarp forest
(ha)

Total
(ha)

Extent (ha) 2,704,815.54 2,004,990.80 4,709,806.34

Percentage (%) 57.43 42.57 100

Table 4	 Extents of lowland and hill dipterocarp forests in the study area

AGB = aboveground biomass, HV = horizontal–vertical, HH = horizontal–horizontal

Polarisation AGB interval
(Mg ha-1)

No. of  
sample plots (n)

Model coefficient r2 Residual error
(± Mg ha-1)a b

HV < 200 32 2.0847 - 24.261 0.7558 18.89

> 200 252 0.4750 - 14.558 0.0264 89.82

Overall 284 1.5326 - 20.890 0.3553 97.66

HH < 200 32 2.3828 - 19.840 0.4335 26.71

> 200 252 0.1096 - 7.7060 0.0011 98.42

Overall 284 0.6757 - 11.083 0.0834 118.10

Table 5 	 Correlation functions and r2 of HV and HV backscatter against AGB intervals
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results were even worse for HH polarisation. The 
results thus confirmed that saturation occurred 
at this level.

It has been reported that at a given 
polarisation and incidence angle, the saturated 
backscatter value for forest was within a small 
range of backscatter, typically between -8 and 
-11 dB at HH and between -11 and -15 dB at 
HV (Le Toan et al. 2004). The dynamic range 
was primarily determined by the backscatter at 
low levels of AGB. It increased with decreasing 
frequency and was higher at HV compared with 
HH polarisation. The increase in backscatter 
with effective vegetation water content led to 
differences in the saturation level as a function 
of AGB and/or the degree of scatter observed 
in the relationship with AGB.

Saturation levels vary with the type and 
structure of forests. Previous studies reported 
that saturation occurred in AGB ranges of 80 to 
150 Mg ha-1 for savanna forest (Lucas et al. 2010), 
40 to 150 Mg ha-1 for boreal and temperate forests 
(Le Toan et al. 1992, Sandberg et al. 2011), 97 
and 270 Mg ha-1 for HH and HV polarisation 
respectively for dense forest, 40 to 150 Mg ha-1 

in the tropics (Hamdan et al. 2011, Saatchi et 
al. 2011) and 150 Mg ha-1 for mangrove forest 
(Hamdan et al. 2014a). Accuracy is mostly 
influenced by tree density, tree size, soil surface 
roughness, soil moisture and the layering effect 
of the SAR itself (Quinones & Hoekman 2004). 
Factors such as orientation of trees, polarimetry, 
incidence angle and crown structure also play an 
important role in biomass estimation (Watanabe 
et al. 2006, Guo et al. 2009). Tree height was the 
prominent factor that affected backscattering. 
Nevertheless, variations in floristic composition, 
forest structure and management practices can 
have important effect on the results (Narvaes et 
al. 2007). These were consistent with findings 
observed in the study. However, the saturation 
level was slightly higher due to the allometric 
equation that was used for estimating AGB. 
The empirical model generated from overall 
sample plots in HV polarisation was applied 
to estimate AGB in the entire study area. The 
model converted the pixel values into AGB in 
the unit of Mg ha-1. Figure 3 shows the spatial 
distribution of AGB in the study area. From the 
map, total AGB in about 4.7 million ha of the 
study area was estimated at 1,650,819,055 Mg. 
Table 6 summarises the variation of AGB over the 

study area. Figure 4 shows the distribution of AGB 
in the study area, represented by histogram of 
frequency of pixel occurrences. Surprisingly, the 
distribution was normal for the AGB throughout 
the study area. Further classification was made 
to the AGB distribution, reported in intervals 
as shown in Figure 5. More than half of the 
study area comprised AGB within the range of 
300–400 Mg ha-1.

The AGB estimated in this study was in 
agreement with many other biomass studies in 
Malaysian forests. Brown et al. (1989) showed 
that the highest AGB for primary moist forest 
was in Malaysia (255–446 Mg ha-1), followed 
by Cameroon (238–314 Mg ha-1), French 
Guiana (280–283 Mg ha-1) and Sri Lanka  
(153–221 Mg ha-1). FAO (1973) reported that 
biomass for mixed dipterocarp forest was 
280–330 Mg ha-1 in Sarawak and 650 Mg ha-1 
in Gunung Mulu (Proctor et al. 1983). A study 
found that the AGB of lowland dipterocarp forest 
at 10 different locations in Peninsular Malaysia 
ranged from 300 to 570 Mg ha-1 with an average 
of 430 Mg ha-1 (Hikmat 2005).

Validation of the estimates

It was found that the RMSE for the predictions 
varied along with the intervals as summarised 
in Table 7. The smallest RMSE was observed 
at 19.32 Mg ha-1 when AGB was < 200 Mg ha-1 
and increased considerably to 79.58 Mg ha-1 
when AGB exceeded 200 Mg ha-1. Overall the 
RMSE was about the summation of both intervals 
(98.76 Mg ha-1) when all validation plots were 
included. The propagation of errors was found to 
be significantly higher at AGB > 200 Mg ha-1 and 
became larger as the amount of biomass increased 
(Figure 6). Taking into consideration the average 
estimation error from all the validation plots, the 
predicted AGB was underestimated by about 15% 
compared with the measured AGB on the ground.  
This is indicated by the best-fit line, which is 
lying under the perfect agreement (dashed line) 
between the predicted and the measured AGB.

CONCLUSIONS

The study has successfully quantified the 
AGB on lowland and hill dipterocarp forests 
in Peninsular Malaysia. The extents of forest 
cover were defined accurately by the L-band 
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Figure 3	 Spatial distribution map of aboveground biomass for the study area
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Table 6 	 Estimated aboveground biomass in the study area in 2010

Parameter Aboveground biomass
(Mg ha-1)

Minimum 21.02

Maximum 578.01

Mean 342.01

Mode 341.57

Standard deviation 73.07

PALSAR data. Total AGB in 2010 was estimated 
at 1.65 billion Mg. The study confirmed that 
the HV backscatter started to saturate at AGB 
of 200 Mg ha-1. This was identified as a major 
limitation of the study. A direct approach may 
not be appropriate to address this limitation and 

some indirect approaches are needed to produce 
accurate estimate of very high levels of biomass. 
Nevertheless, the study provided an alternative 
for AGB retrieval that could be utilised in a 
practical manner to assist in the management 
and protection of forested areas.
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Figure 4 	 Histogram of aboveground distribution over the study area
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Figure 5	 Composition of aboveground biomass divided into several intervals
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The study also provided further recognition 
of the expanding capacity of space-based 
remote sensing to meet the requirements of 
large-area forest mapping and monitoring 
activities at the national scale. The approach 
described can be used as a practical guide for 
countries for preliminary design of national level  
biomass assessments.
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