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CANOPY GAP DYNAMICS OF TWO DIFFERENT FOREST
STANDS IN A MALAYSIAN LOWLAND RAIN FOREST
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NUMATA, S., YASUDA, M., OKUDA, T., KACHI, N. & NUR SUPARDI, M. N. 2006. Canopy gap dynamics
of two different forest stands in a Malaysian lowland rain forest. The forest structure, canopy gap dynamics
and light environment in the understorey of an unlogged primary forest and a regenerating forest that had
been selectively logged in the 1950s in the Pasoh Forest Reserve, Negri Sembilan, Peninsular Malaysia were
studied. Eightyears’ observation showed that a higher frequency and larger size of canopy gaps occurred
in the primary forest compared with the regenerating forest. The lack of large trees in the regenerating
forest was responsible for the lower frequency and size of canopy gaps. Most of the forest floor was under
closed canopy in both forests. However, the light availability to the forest understorey was significantly
higher in the regenerating forest compared with that of the primary forest in closed canopy areas. This
may be because of the lesser stratification of canopy layers in the regenerating forest. These changes in the
light condition in the regenerating forest may have impacts on the regeneration of tropical tree species.
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NUMATA, S., YASUDA, M., OKUDA, T., KACHI, N. & NUR SUPARDI, M. N. 2006. Dinamik pembukaan
silara bagi dua dirian hutan berlainan di dalam hutan hujan tanah pamah di Malaysia. Struktur hutan, dinamik
pembukaan silara dan kehadiran cahaya di tingkat bawah kanopi hutan primer yang tidak dibalak dan
hutan terpulih yang dibalak pada tahun 1950an di Hutan Simpan Pasoh, Negeri Sembilan dikaji. Pemerhatian
selama lapan tahun menunjukkan bahawa hutan primer mempunyai pembukaan silara yang lebih besar
dan pada frekuensi yang lebih tinggi daripada hutan pulih. Kekurangan pokok bersaiz besar di dalam
hutan terpulih ialah punca utama pembukaan silara yang kecil pada kadar yang rendah. Kebanyakan lantai
hutan dinaungi silara. Namun kehadiran cahaya adalah lebih ketara di dalam hutan terpulih. Ini mungkin
disebabkan oleh berkurangnya lapisan silara di dalam hutan terpulih. Perubahan keadaan cahaya di dalam
hutan terpulih mungkin boleh mempengaruhi pemulihan spesies pokok tropika.

INTRODUCTION

Tropical rain forests are characterized by a
complex vertical structure that creates spatial and
temporal heterogeneity in environmental factors
such as lightlevel (Whitmore 1984). The spatial
and temporal heterogeneity of forest structure
depends on the rate of canopy gap production
as well as on canopy gap sizes, shapes, locations
and species composition.

Canopy gaps play an important role in the
regeneration of forest by providing habitat for

regenerating seedlings and saplings in the forest
floor (Hubbell & Foster 1986). In shaded
understorey of forests, many suppressed
seedlings and saplings wait for many years for
the appearance of a canopy gap (Hubbell &
Foster 1986, Forget 1997, Ashton 1998, van der
Meer et al. 1998, Denslow & Guzman 2000).
Therefore, forest regeneration processes
frequently depend on the natural disturbance
regimes (Whitmore 1984).
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Tropical rain forests are facing rapid human
impacts. In South-East Asia, selective logging is
a widely employed approach for commercial
timber production. Selective logging is therefore
a common form of forest structural alteration.
For example, the canopy and stand structures
differ distinctly between primary forest and
regenerating forest after selective logging
(Okuda et al. 2003) and many studies have shown
direct damage to residual forest stands after
logging. Many studies have investigated the
potential effects of logging on forest
regeneration (Cannon et al. 1994, Panfil &
Gullison 1998), but few studies have shown long-
term effects of logging on the internal light
condition of a forest.

If canopy structures significantly differ between
primary and regenerating forests, logging may
affect the growth cycle of a forest and lead to
changes in the internal light environment
(Chapman & Chapman 1997, Dupuy & Chazdon
1998, Fredericksen & Mostacedo 2000). In
addition, if gap dynamics may provide stage of
origins and maintenance of species diversity
(Hubbell & Foster 1986, Chazdon et al. 1999,
Hubbel et al. 1999), effects of human disturbance
on canopy gap dynamics would be the key for
species richness and diversity of lowland rain
forests. Therefore, we hypothesized that changes
in forest structure following logging remain as
changes in the light environment of tree
seedlings. We focused on forests after selective
logging and compared the frequency of canopy
gaps and light availability on the forest floor of
an unlogged primary forest and a regenerating
forest after selective logging.

MATERIALS AND METHODS

The study was conducted in a lowland rain forest
in Pasoh Forest Reserve, Negeri Sembilan State,
Peninsular Malaysia (latitude 2° 59' N, longitude
102° 19" E). In this region, there are generally
two weak dry seasons (July and January) each
year and the average annual rainfall is
approximately 2000 mm (Numata et al. 2003).
The reserve has a total area of 2450 ha (Figure
la). The core area (200 ha) is surrounded by
regenerating forests that were logged and
silviculturally treated between 1955 and 1959
under the Malaysian Uniform System (MUS)
approach (Manokaran & Swaine 1994).
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The main part of the reserve consists of a
lowland dipterocarp forest of the Keruing—
Meranti type (Wyatt-Smith 1987), and there are
no considerable differencesin altitude (105-130 m),
topography or soil type (Bugor-Mallacca
association). A 10 ha plot including different
profiles near the entrance to the reserve was
established. The study plot consisted of unlogged
primary forest stand (77.6%) and forest that has
been regenerating since selective logging under
MUS in 1958 (22.4%) (Yasuda 1998; see Figure 1).
The primary forest stand shows various stages of
maturity, from canopy gaps to climax forest
topped by emergent trees with heights of 50 to
60 m. A part (34.4%) of the primary forest stand
was seasonally swampy; so accordingly the
swampy area was excluded from analyses owing
to differences in vegetation and forest structure
between the swampy area and the rest of the
primary forest (Okuda et al. 2004). This area is
inundated generally in April-May and
November—December.

Tree size distribution was observed in the
primary and regenerating forest stands by
vegetation survey. For small trees (diameter at
breast height [dbh] =5 cm), five 20 X 20 m sub-
quadrats were randomly established in each
forest and dbh was measured. For large trees
(dbh > 60 cm), dbh of all trees was measured in
the entire 10 ha plot.

A canopy gap survey was conducted in the 10 ha
plot each year from August 1992 till January 2000.
For the survey, the plot was divided into 5 X5 m
sub-plots (n = 400). A canopy gap was visually
defined as open where open sky (= 25 m?) could
be seen over the investigator’s head (1.7 m above
the ground) at the centre of each sub-plot.
Although canopy gaps are defined in terms of
canopy height (Adachi et al. 1999, Birnbaum
2001), canopy gap was recorded by direct
observation. To determine the canopy gap
dynamics in each plot, a gap ratio was calculated
as the total number of canopy gap patches found
in each forest type. Gap size was calculated by
the number of canopy gap patches connecting
the adjacencies. The gap size was calculated for
each isolated canopy gap: total number of
sub-plots aggregated on the grids of the 10 ha
plot.

To determine the light availability in the forest
understorey, 121 points (11 points/line x 11
points/line) were placed in each 1 ha area of
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forest type at regular intervals in the two most
extreme corners of the forest block under
investigation (Figure 1). Hemispherical
photographs were taken in May 2001 from 0.5 m
above the ground at regular intervals of 10 m
inside the plots through a fisheye converter (FC-
E8, Nikon, Japan) mounted on a digital camera
(Cool Pix 950, Nikon). Two light environment
variables—direct site factor (DSF) and indirect
site factor (ISF)—in each subplot were estimated
by Hemiview software (Delta-T Devices Ltd, UK).
DSF is the percentage of the maximum potential
direct radiation that reaches the photo site and
is a measure of the total possible sunfleck
availability. ISF is the fraction of incident diffuse
radiation transmitted by holes in the canopy
(Pearcy 1989).

All statistical analyses were conducted with
StatView (ver. 5.0, SAS Institute, Inc., USA).
Comparisons of the primary and regenerating
forests were generally done by Student’s #test.
For comparisons of variables among size classes
and years, two-way ANOVA was used. Post-hoc
multiple comparisons of these variables were
performed by using Scheffé’s post-hoc test.

RESULTS
Forest structure

Overall, there were clear differences in forest
structure between the primary and regenerating
forest stands. The density of trees (>5 cm in dbh)
was 1415 ha™ in the primary forest stand and 1740
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ha™ in the regenerating forest stand. The mean
basal area of trees (> 5 cm in dbh) was 32.3 m? ha!
in the primary forest stand and 44.0 m* ha™ in the
regenerating forest stand, but the mean dbh of
trees did not differ significantly between forest (df
=629, F=-0.44, p=0.66).

The distribution of tree size classes of small trees
(dbh < 30 cm) differed between two forest stands
(Figure 2a). The density was higher in the
regenerating forest stand but the difference was
significantin only one size class (10-15 cm; df = 64,
F=-2489, p <0.05). No distinct differences in the
densities of mediums-sized trees (3560 cm) were
found between the two forest stands. On the other
hand, the density of large trees (dbh > 70 cm) was
higher in the primary forest stand while tree density
of the class (60-70 cm in dbh) was lower in the
primary forest stand (Figure 2b). No large trees
(dbh > 130 cm) were found in the regenerating
forest stand.

Canopy gap dynamics

Differences in canopy gap dynamics were observed
between the primary and regenerating forest
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(5 cm < dbh <60cm) (b) Size distribution of
large trees (dbh = 60 cm) in the primary and
regenerating forest stands. Bars indicate SD.
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stands. Many trees had died of trunk-snapping or
uprooting during a windstorm in 1995 and 1996,
and some large gap creations were observed in this
region. However, an increase in the gap ratio was
distinctive only in the primary forest. Inter-annual
changes in the gap ratio differed between the two
forest stands (Figures 3a, c). The gap ratio varied
from 0.045 (1992) to 0.160 (1995) in the primary
forest stand, and from 0.007 (1994) to 0.043 (1998)
in the regenerating forest stand. The frequency of
canopy gaps was higher in the primary forest stand
than in the regenerating forest stand in each year
(df=7,F=5.45, p <0.001).

Both frequency of canopy gaps and gap size
tended to be larger in the primary forest stand than
in the regenerating forest stand (Figures 3b, c).
The gap size varied from 1 to 58 (1995) in the
primary forest stand, and from 1 to 8 (1997) in the
regenerating forest stand. The gap size ratio in
the primary forest stand was significantly different
between the years (df = 7, F = 5.71, p < 0.0001)
and was significantly higher than that in the
regenerating forest stand (df = 1, F = 9.79, p =
0.0019).

Light environment of understorey

The forest floor was generally shady in both forests,
except beneath canopy gaps, but there were
differences in light availability on the forest floor.
ISF ranged from 0.04 to 0.10 in the primary forest
stand, and from 0.06 to 0.13 in the regenerating
forest stand (Figure 4a). In contrast to the canopy
gap dynamics, both ISF and DSF tended to be
higher in the regenerating forest stand than in the
primary forest stand (Figure 4a, b). The coefficient
of variation (CV) in ISFwaslarger in the primary forest
stand (CV = 0.171) than in the regenerating forest
stand (GV = 0.121), but the distribution patterns of
DSF and ISF were similar between two forest stands.

DISCUSSION

Forest structures clearly differed between primaryand
regenerating forest stands. It may be because the
incomplete MUS operation resulted in greater tree
regeneration in medium-sized trees (Figure 2).
The MUS was originally one cut irregular
shelterwood using proper silvicultural definition
(Wyatt-Smith 1963) but generally does not mean
selective logging (Okuda et al. 2003). However,
this logging regime generally involved
removing the mature crop in a single operation
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Annual changes in (a) canopy gap ratio and (b) gap size which means number of clustering sub-plots with

canopy gaps in primary and regenerating forest stands. Bars indicate SE. (c) Location of sub-plots with

canopy gaps (solid points) in the plot.

that harvested trees of all species >45 cm in dbh in
the Pasoh Forest Reserve (Manokaran 1996). High
density medium-sized trees and low density large-
sized trees in the 6 ha regenerating forest plot
compared with the primary primary forest stand
(50 ha) are suspected the result of inadequate
practice of the MUS (Okuda et al. 2003). Canopy

gap dynamics may be correlated with canopy
structures nested from canopy units (Birnbaum
2001) aswell as weather disturbance such as strong
typhoons (Itaya et al. 2004). Large trees may be
essential for the creation of frequent and large
canopy gaps in primary forest. A high frequency
and large sizes of canopy gaps were found in the
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primary forest stand but not in the regenerating
foreststand (Figure 3). These results are consistent
with previous findings that old-growth forests have
more large gaps than secondary-growth forests
(Nicotra et al. 1999). All types of tree fall are found
in forests among all sizes of tree (e.g. Hubbell &
Foster 1986). Moreover, large canopy gaps persist
longer and thus have a marked impact on canopy
gap dynamics. For example, approximately 70%
of small canopy gaps were closed, but most large
gaps persisted for two years in a primary forest
(Adachi et al. 1999). Although the creation of large
gaps by strong windstorms may be rare, a primary
forest containing large trees would have a greater
potential for the maintenance of canopy gaps than
a regenerating forest.

Irrespective of the frequency and size of canopy
gaps, the ISF and DSF in understorey were higher
in the regenerating forest stand compared with
those in the primary forest stand (Figure 4). This
may be because of the lesser stratification of canopy
layers in the regenerating forest (Canham &
Burbank 1994, Terborgh & Mathews 1999). The
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canopy stratification of the primary forest is
characterized by unevenness of crown size and high
convexity caused by the many emergent trees.
Okuda et al. (2004) suggested that variations in
canopy height are smaller in a regenerating forest
stand (6 ha plot in the Pasoh Forest Reserve, see
Okuda et al. 2003) than in a primary forest stand
(50 ha plot in the Pasoh Forest Reserve). Since a
larger gap size may lead to a greater proportion of
open points at angles close to the zenith (Nicotra
et al. 1999), the rich stratification of canopy in
primary forest is a primary factor for the difference
in light availability on the forest floor. Furthermore,
light availability varies considerably within canopy
gaps owing to differences in the underlayer
vegetation (Canham et al. 1990, Chazdon 1992).
A high frequency of canopy gaps, therefore, may
not always increase the light availability on the forest
floor.

The CV of ISF (but not DSF) was slightly higher
in the primary forest compared with that in the
regenerating forest. However, the distribution
patterns of DSF and ISF were similar between forests
(Figure 4). Small canopy gaps caused by branch
falls are a primary factor in determining the
temporal pattern of light availability on the forest
floor. However, temporal changes in light
availability should be similar in both forests because
the amount of branch fall is similar in primary and
regenerating forests, whereas tree falls causing
canopy gaps are more common in primary forest
than in regenerating forest (Hoshizaki et al. 2004).
Therefore, heterogeneity of light availability on the
forest floor is less conspicuous than that of canopy
structure in the primary forest. A high density of
small trees may reflect vertical heterogeneity of light
availability (Canham et al. 1990, Terborgh &
Mathews 1999).

CONCLUSIONS

There were clear differences in canopy gap
dynamics and understorey light availability between
the primary and regenerating forest stands. The
lack of large trees in the regenerating forest stand
was responsible for the static canopy gap dynamics:
lower frequency and size of canopy gaps. Many tree
species need to be able to persist in a suppressed
condition and to cope with large differences in light
availability on the forest floor. Dipterocarp tree
species, which dominate South-East Asian forests,
are generally regarded as climax species, but
different species show different responses to canopy
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gaps and different strategies for regeneration in
the same place. Therefore, by altering light
availability, logging may have different effects on
seedling and sapling establishment among species.
If dynamic processes are needed for healthy natural
forest cycle and maintenance of rich forest
biodiversity, artificial thinning may be necessary in
order to create variations in tree size and
heterogeneity of light availability in regenerating
forests as a possible treatment.
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