MAMMALIAN WILDLIFE TOURISM IN SOUTH-EAST ASIAN TROPICAL RAINFORESTS: THE CASE OF ENDAU ROMPIN NATIONAL PARK, MALAYSIA

Y Aihara¹, T Hosaka¹, M Yasuda², M Hashim³ & S Numata^{1, *}

 ¹Department of Tourism Science, Tokyo Metropolitan University, Hachiouji, Tokyo, Japan
 ²Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto, Japan
 ³Geoscience & Digital Earth Centre (INSTeG), Research Institute for Sustainable Environment, Universiti Teknologi Malaysia, 81310 Johore Bahru, Malaysia

*nmt@tmu.ac.jp

Received April 2015

AIHARA Y, HOSAKA T, YASUDA M, HASHIM M & NUMATA S. 2016. Mammalian wildlife tourism in South-East Asian tropical rainforests: the case of Endau Rompin National Park, Malaysia. Wildlife tourism is for the purpose of watching and/or encountering wildlife. In South-east Asia, mammalian wildlife tourism is less popular than in Africa. This is because mammalian wildlife tourism in South-East Asia is generally targeted at terrestrial national parks with forest fauna, as it is difficult to observe mammals in dense rainforest. To assess the potential of a South-East Asian national park for mammalian wildlife tourism, a mixed methods approach was used, 1) mammalian wildlife-based tourist attractions and 2) park use and visitor attitudes towards wildlife in Endau Rompin National Park, Peninsular Malaysia. There are potentially 149 mammalian species, including 24 threatened species, in Endau Rompin National Park. Camera trap data indicated that small and medium sized mammals do occur in these areas frequented by tourists. Footprints, nests, scratches and disturbance traces of various mammals were also observed. However, most visitors did not have high expectations regarding wildlife encounters, nor did many actually see wildlife during their stay. These results implied that animal signs and devices for indirect observation of elusive and/or rare animals were important at sites of mammalian wildlife-based tourism. Additionally, Asian elephants could be a strong attraction for wildlife tourists, but there was concern about conflict between local people and elephants.

Keywords: Animal signs, camera trapping, mammalian fauna, rainforests, tourist perception

INTRODUCTION

Nature-based tourism is expected to be the leading foreign exchange earners in several countries (Eagles et al. 2001). An estimated 40-60% of international tourists are nature tourists, of which some 20-40% are wildliferelated tourists (Reynolds & Braithwaite 2001). Wildlife tourism is undertaken to view and/or encounter wildlife (Newsome et al. 2005). To be considered sustainable, wildlife tourism should satisfy conservation and development objectives, (Udaya-Sekhar 2003). However, tourism can also impact wildlife through stress and behavioural modification due to proximity, feeding, accidental fires, noise, traffic and harassment. Such pressure may cause sensitive species such as cheetahs to fail at hunting or abandon habitat frequented by tourists (Lilieholm & Romney 2000). Wildlife tourism would be sustainable only if it contributes to the conservation and survival of target species and their habitats, provides benefits for local communities and community development, offers good quality tourism in line with market expectations and is commercially viable (Tapper 2006).

Africa has a long history of mammalian wildlife (safari) tourism related to conspicuous mammals with high diversity, abundance and body size, which are easy to find and observe in open habitats (Higginbottom 2004). A group of large and charismatic mammalian species known as the 'big five' (elephants, buffalo, rhinoceros, lions and leopards) is the primary target of international tourists in African national parks (Goodwin et al. 1997, 2000). In contrast,

mammalian wildlife is not a popular attraction in South-East Asia, and only few studies have been conducted on South-East Asian mammalian wildlife tourism. In South-East Asia, mammalian wildlife tourism is favourable in national parks that are home to diverse forest fauna. As new areas and species are becoming accessible, wildlife tourism has significant future potential in some countries (Higginbottom 2004). However, it is challenging to find and observe wildlife in dense rainforests, with the exception of some large, diurnal mammals (Knight 2010, Hill & Gough 2014, Hill et al. 2014). For example, great ape watching in African rainforests is highly popular (Laurence et al. 2006). Most South-East Asian rainforest mammals are nocturnal, limiting the potential targets of wildlife tourism. Thus, visitors' attitudes towards wildlife viewing in South-East Asian rainforests, and the potential of South-East Asian rainforests to support wildlife tourism, need to be addressed as a means to developing sustainable tourism practices in the region.

Understanding what people value in wildlife viewing is important in developing sustainable tourism practices in protected areas such as national parks (Reynolds & Braithwaite 2001). Understanding tourist experiences and preferences is crucial to developing sustainable wildlife tourism practices in South-East Asian tropical rainforests. However, tourist satisfaction is highly variable and is influenced by itinerary, destination image, trip quality and perceived value (Chen & Tsai 2007). For example, Booth et al. (2011) showed that species rarity was a good predictor of visitor numbers for birdwatching in the UK. Lindsey et al. (2007) suggested differences in wildlife viewing preferences between countries and levels of experience. However, there is little information on fauna as a basis for tourist attractions, nor on visitor perceptions and experiences in tropical rainforests.

This study evaluated how national parks with tropical rainforests provided potential mammalian wildlife tourist attractions. First, to evaluate potential mammal habitats, we gathered information on mammal species that occurred in Endau Rompin National Park, Peninsular Malaysia. Second, we conducted camera trapping and animal sign surveys to assess potential wildlife-based tourism attractions. Aihara Y et al.

Third, we conducted an explanatory survey to evaluate visitors' motivations, expectations and experiences regarding mammal-viewing using a questionnaire.

MATERIALS AND METHODS

Study site

Endau Rompin National Park is located at the border of Johore and Pahang, in Peninsular Malaysia (Figure 1). The northern portion of the park is designated as Endau Rompin State Park and managed by Pahang state. On the Johor side, it has two tourist areas in Peta and Selai. The Peta area covers 19,562 ha, while the Selai area covers 29,343 ha. Our study was conducted in the Peta area of Johor state (2° 31' N, 103° 24' E, 40 m above sea level).

In 1972, the Malaysian federal government proposed establishing a national park to protect the Sumatran rhinoceros (*Dicerorhinus sumatrensis*). Based on the findings of Endau Rompin Scientific and Heritage Expedition (Kiew et al. 1987, Mohamed & Zakaria-Ismail 2005), the government of Johor state designated a 25,200 ha area in the upper Endau river site as a national park. Accordingly, 48,905 ha of mostly virgin lowland tropical rainforest was gazetted as Endau Rompin National Park in 1989. Endau Rompin National Park is managed by the Johore National Parks (Johore) Corporation Enactment in 1989.

The forest comprises mixed dipterocarp forest of keruing-red meranti (*Dipterocarpus shorea*) and kapur (*Dryobalanpus*) types (Wong et al. 1987). During the 1970s and 1980s, selective logging occurred in portions of Endau Rompin National Park and there was a chance that further logging concessions would be awarded. However, logging last occurred in 1989 (Stecker 1996). The expedition found various endemic plant species (Soepadmo 1987). Annual rainfall in Endau Rompin National Park ranged from 2000 to 3600 mm.

Endau Rompin National Park has been open to public since September 1993. Approximately 4000 visitors entered Peta area each year (Numata, personal observation). There were about 7000 visitors in total in 2005, but this number decreased to 3,500 in 2007. Approximately 20–

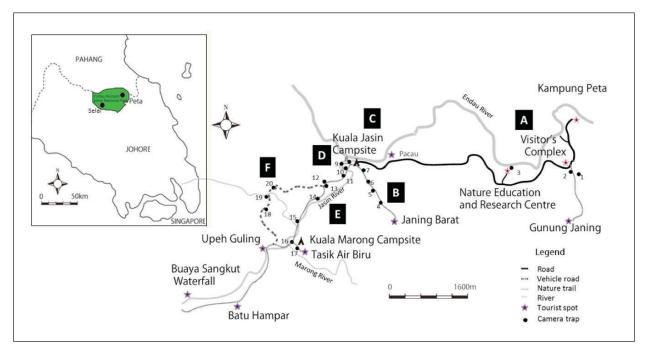


Figure 1 Map of Endau Rompin National Park and Peta area of the present study, A–F indicate different study zones, and numbers indicate the locations of cameras used in the study

30% of visitors came from western countries, while the rest were locals and Singaporeans. Many students came to Endau Rompin National Park for nature education and school events. Generally the month of May had the most number of visitors (500-700 per month), while December and January, at the height of the rainy season, had the fewest (< 100 per month). The park provided opportunities for various tourist activities, including camping, jungle trekking, night walking, swimming, canoeing, river rafting and nature education. In the Peta area, jungle trekking from Kuala Jasin campsite to Upeh Guling waterfall and swimming at Tasik Air Biru (water pond) were popular activities. There is a village, Kampung Peta, of local aborigines (orang asli) (300 people from 34 households), with a visitor complex. There are three campsites i.e at Kuala Jasin, Kuala Marong and Batu Hampar in the remote portions of the Peta area.

Potential mammalian fauna in Endau Rompin National Park

Published information was used to determine the composition of potential species at Endau Rompin National Park (Davison & Kiew 1987, DWNP 2010, IUCN 2014). Specimenbased records were also used to infer mammal distribution patterns (Medway 1983, Corbet & Hill 1992).

To evaluate qualitative and quantitative changes in mammalian fauna and human pressure on wildlife at the Park, the orang asli in Kampung Peta were interviewed on 11–12 September 2011. Among the residents of Kampung Peta, the village head and a handicraft maker, who made animal traps, were selected as key persons within the community. Interviews covered information about the past and current state of wildlife in and around Kampung Peta. The interview was conducted for approximately 1 hour each.

Camera trapping

Camera traps minimised human disturbances and provided an inexpensive and time-efficient means of observing wildlife in tropical rainforests (Numata et al. 2005). To understand the potential of wildlife as tourism resource in the visitors' area of Endau Rompin National Park, a camera trapping study was carried out using camera with built-in infrared motion sensor, built-in flash and automatic quartz time, from 8–22 September 2011. Each camera was wrapped

tightly in a thin, transparent polypropylene bag to protect it from water, and the wrapped cameras were placed inside plastic boxes open to the air. A total of 20 cameras were placed at a height of 0.5–1.0 m along nature trails, old logging roads and around tourist attractions in the study area (Figure 1). The sites were divided into six groups based on surrounding environment and trail use; zone A (near the visitor complex; camera 1–3), zone B (along the trail to Janing Barat; camera 4-7), zone C (along a trail popular for night walks; camera 8-10), zone D (along a wide trail; camera 11–13), zone E (along a natural trail to Kuala Marong; camera 14-17), and zone F (along an old logging road; camera 18-20). Logging roads in zones D and F were constructed when the park was established and are still open to vehicles. Nature trails were constructed for jungle trekking and are closed to vehicles. In general, the number of visitors on nature trails was greater in zones B–F (1760 visitors in 2011) than in zone A (239 visitors) (Numata, personal observation).

The species compositions of the six zones were compared using the camera trap capture rates. The trapping rate was calculated for each camera as the number of photographs that captured mammals divided by time, in days, for which the camera was installed. Pictures taken from 6.01 am till 6.00 pm were regarded to fall during times of tourist activity (daytime), and those taken from 18:01 to 06:00 were regarded to fall during relative tourist inactivity (night time). Data was collected for 11 days for each camera. The study included a total of 220 camera-days.

Animal signs

To understand the abundance and distribution patterns of large and low density mammals, scratch, foot prints, feeding and faeces along trails were surveyed in the study region from 8–9 September 2011. Sign locations were determined by GPS (map 62S) and identified to species with the help of park rangers.

Visitor park use and attitude towards wildlife

Face-to-face questionnaire surveys were conducted in English or Malay with 51 respondents from 9–12 September 2011 to collect information on Endau Rompin National Park visitor activity and awareness of tropical rainforest mammals. The questionnaire was designed to collect information on motives, attitudes and experiences regarding natural resource activities and wildlife in Endau Rompin National Park. Visitors answered the questionnaire on the last day of their stay. The questions are shown in Table 1.

RESULTS

Mammals in Endau Rompin National Park

In total, 149 mammal species from 11 orders (Carnivora, Cetartiodactyla, Chiroptera, Dermoptera, Eulipotyphla, Perissodactyla, Pholidota, Primates, Proboscidea, Rodentia, and Scandentia) were residents of the park. Seven endangered species, i.e. tiger (Panthera tigris), flat-headed cat (Prionailurus planiceps), Sunda otter civet (Cynogale bennettii), Malayan tapir (Tapirus indicus), Sunda pangolin (Manis *javanica*), Lar gibbon (*Hylobates lar*) and Asian elephant (Elephas maximus) were listed as inhabitants (Table 2). Although the critically endangered Sumatran rhinoceros (Dicerorhinus sumatrensis) was listed, park rangers informed that there was no evidence of its presence in Endau Rompin National Park in the past 10 years.

The interviews showed that the orang asli, who have long lived in the forest, understand mammal behaviour because of their dependence on animals for food (although they no longer hunt for animals except in times of food insecurity). Ten years ago it was easy to find animals such as tapir and sambar in Kampung Peta but now only few, except for elephants, remain. Elephant population in Endau Rompin National Park has increased each year from 20 to 70 individuals due to translocation of rogue elephants as part of rescue operations. Their habitat outside the park in Johore state has been disturbed by deforestation, illegal logging, illegal hunting and development. Consequently, some elephants have entered Kampung Peta in search of food, causing human-elephant conflict.

Camera trapping in Endau Rompin National Park

A total of 34 photographs of nine mammal species were obtained from 7 of the 20 sites.

	Question	Answer type
1	Where are you from?	Open-ended
2	How long did you stay?	Open-ended
3	What was your favourite feature of national parks generally?	Multiple selection
4	What is your reason for visiting Endau Rompin National Park?	Multiple selection
5	What activities were you interested in pursuing while in Endau Rompin National Park?	Multiple selection
6	What mammals were you hoping to see?	Multiple selection
7	What mammals did you see during your stay? Where did you see them?	Open-ended
8	What do you think is the best feature of Endau Rompin National Park?	Multiple selection
9	How satisfied are you with Endau Rompin National Park?	Five-point evaluation

Table 1Survey questions

They were five large species namely sambar (*Rusa unicolor*), wild boar (*Sus scrofa*), greater oriental chevrotain (*Tragulus napu*), crab-eating macaque (*Macaca fascicularis*) and Malayan porcupine (*Hystrix brachyura*), and four small species, namely short-tailed gymnure (*Hylomis suillus*), spiny rats (*Maxomys* spp.), three-striped ground squirrel (*Lariscus insigns*) and common treeshrew (*Tupaia glis*) (Figure 2a). Wild boars were recorded most frequently in 10 photographs.

Zone C saw the greatest number of mammals recorded (night trail, 0.36 camera/day), followed by zone F (old logging road; 0.24 camera/day) (Figure 2a). Five mammal species were confirmed in these zones.

There was no considerable difference in trapping rates between times of tourist activity and inactivity at the camera trapping sites (Figure 2b). Wild boars and common treeshrews were recorded regardless of time of the day. Wild boars were more common during the day, while treeshrews were more common before dawn. Crab-eating macaque and short-tailed gymnure were recorded only during the day, while sambar deer, greater oriental chevrotain, Malayan porcupine, spiny rats and three-striped ground squirrel were recorded only at night or before dawn.

Animal signs

We recorded signs of five large mammal species, i.e. nests and footprints of wild boar, footprints of tigers, footprints of Malayan tapirs, scratch from sun bear (*Helarctos malayanus*) and feeding and feces of the Asian elephant. Footprints and feeding and faeces of wild boar and Asian elephant were found throughout the study area (Figure 3), while those of tigers and Malay tapirs were found only along wide trails. The sun bear scratch was found along a nature trail (from Kuala Marong campsite to Tasik Air Biru) frequented by tourists. Many large mammal footprints occurred in open places in zones D and F, though they also occurred in confined places in zones B and E.

Visitor perceptions and experiences in Endau Rompin National Park

In total, 51 visitors answered the questionnaire. Of these, seven were international visitors and 44 were Malaysians. Of the seven international visitors, three were from the United Kingdom, two from Germany, one from Belgium and one from France. All non-Malaysians were young or middle-aged couples except one from United Kingdom. A total of 41 of 44 Malaysians were students camping as part of a nature education program at Endau Rompin National Park. The visitors stayed for 2 to 7 days, with an average of 2.9 ± 0.8 days.

Visitors' reasons for visiting and expectations regarding wildlife in Endau Rompin National Park

The most common reasons for visiting Endau Rompin National Park were jungle trekking and camping (72.5% of respondents). Wildlife-

Order	Family	Scientific name	English name	IUCN Red List 2014.1	Peninsular Malaysia Red List 2010
Carnivora	Felidae	Catopuma temminckii	Asiatic golden cat	NT	
Carnivora	Felidae	Panthera pardus	Leopard	NT	EN
Carnivora	Felidae	Panthera tigris	Tiger	EN	EN
Carnivora	Felidae	Pardofelis marmorata	Marbled cat	VU	
Carnivora	Felidae	Prionailurus bengalensis	Leopard cat	LC	
Carnivora	Felidae	Prionailurus planiceps	Flat-headed cat	EN	NT
Carnivora	Herpestidae	Herpestes brachyurus	Short-tailed mongoose	LC	
Carnivora	Herpestidae	Herpestes javanicus	Small Asian mongoose	LC	
Carnivora	Mustelidae	Aonyx cinerea	Asian small-clawed otter	VU	
Carnivora	Mustelidae	Lutrogale perspicillata	Smooth-coated otter	VU	
Carnivora	Mustelidae	Martes flavigula	Yellow-throated marten	LC	NT
Carnivora	Mustelidae	Mustela nudipes	Malay weasel	LC	NT
Carnivora	Mustelidae	Prionodon linsang	Banded linsang	LC	NT
Carnivora	Ursidae	Helarctos malayanus	Sun bear	VU	VU
Carnivora	Viverridae	Arctictis binturong	Binturong	VU	
Carnivora	Viverridae	Arctogalidia trivirgata	Small-toothed palm civet	LC	
Carnivora	Viverridae	Cynogale bennettii	Sunda otter civet	EN	
Carnivora	Viverridae	Hemigalus derbyanus	Banded civet	VU	
Carnivora	Viverridae	Paguma larvata	Masked palm civet	LC	
Carnivora	Viverridae	Paradoxurus hermaphroditus	Common palm civet	LC	
Carnivora	Viverridae	Viverra megaspila	Large-spotted civet	VU	EN
Carnivora	Viverridae	Viverra tangalunga	Malay civet	LC	
Carnivora	Viverridae	Viverra zibetha	Large Indian civet	NT	NT
Carnivora	Viverridae	Viverricula indica	Small Indian civet	LC	NT
Cetartiodactyla	Cervidae	Muntiacus muntjak	Southern red muntjac	LC	NT
Cetartiodactyla	Cervidae	Rusa unicolor	Sambar deer	VU	VU
Cetartiodactyla	Suidae	Sus barbatus	Bearded pig	VU	NT
Cetartiodactyla	Suidae	Sus scrofa	Wild boar	LC	
Cetartiodactyla	Tragulidae	Tragulus kanchil	Lesser oriental chevrotain	LC	
Cetartiodactyla	Tragulidae	Tragulus napu	Greater oriental chevrotain	LC	
Chiroptera	Emballonuridae	Emballonura monticola	Lesser sheath-tailed bat	LC	
Chiroptera	Emballonuridae	Saccolaimus saccolaimus	Bare-rumped sheathtail- bat	LC	
Chiroptera	Emballonuridae	Taphozous melanopogon	Black-bearded tomb bat	LC	
Chiroptera	Hipposideridae	Coelops frithii	Tail-less leaf-nosed Bat	LC	EN
Chiroptera	Hipposideridae	Hipposideros armiger	Great Himalayan leaf- nosed bat	LC	
Chiroptera	Hipposideridae	Hipposideros ater	Dusky leaf-nosed bat	LC	
Chiroptera	Hipposideridae	Hipposideros bicolor	Bicolored leaf-nosed bat	LC	
Chiroptera	Hipposideridae	Hipposideros cervinus	Fawn-colored leaf-nosed bat	LC	

 Table 2
 Mammal species observed in Endau Rompin National Park

Order	Family	Scientific name	English name	IUCN Red List 2014.1	Peninsular Malaysia Red List 2010
Chiroptera	Hipposideridae	Hipposideros cineraceus	Least leaf-nosed bat	LC	
Chiroptera	Hipposideridae	Hipposideros diadema	Diadem leaf-nosed bat	LC	
Chiroptera	Hipposideridae	Hipposideros doriae	Bornean leaf-nosed Bat	NT	VU
Chiroptera	Hipposideridae	Hipposideros galeritus	Cantor's leaf-nosed bat	LC	
Chiroptera	Hipposideridae	Hipposideros larvatus	Horsfield's leaf-nosed bat	LC	
Chiroptera	Hipposideridae	Hipposideros ridleyi	Ridley's leaf-nosed bat	VU	
Chiroptera	Megadermatidae	Megaderma lyra	Greater false vampire	LC	
Chiroptera	Megadermatidae	Megaderma spasma	Lesser false vampire	LC	
Chiroptera	Molossidae	Cheiromeles torquatus	Greater naked bat	LC	
Chiroptera	Molossidae	Tadarida johorensis	Northern free-tailed bat	VU	
Chiroptera	Molossidae	Tadarida plicata	Wrinkle-lipped free-tailed bat	LC	
Chiroptera	Nycteridae	Nycteris tragata	Malayan slit-faced bat	NT	
Chiroptera	Pteropodidae	Aethalops alecto	Pygmy fruit bat	LC	VU
Chiroptera	Pteropodidae	Balionycteris maculata	Spotted-winged fruit bat	LC	
Chiroptera	Pteropodidae	Chironax melanocephalus	Black-capped fruit bat	LC	
Chiroptera	Pteropodidae	Cynopterus brachyotis	Lesser dog-faced fruit bat	LC	
Chiroptera	Pteropodidae	Cynopterus horsfieldii	Horsfield's fruit bat	LC	
Chiroptera	Pteropodidae	Macroglossus minimus	Dagger-toothed long- nosed fruit bat	LC	
Chiroptera	Pteropodidae	Macroglossus sobrinus	Hill long-tongued fruit bat	LC	
Chiroptera	Pteropodidae	Megaerops ecaudatus	Temminck's tailless fruit bat	LC	
Chiroptera	Pteropodidae	Megaerops wetmorei	White-collared fruit bat	VU	EN
Chiroptera	Pteropodidae	Penthetor lucasi	Lucas's short-nosed fruit bat	LC	
Chiroptera	Pteropodidae	Pteropus vampyrus	Large flying-fox	NT	
Chiroptera	Pteropodidae	Rousettus amplexicaudatus	Geoffroy's rousette	LC	
Chiroptera	Rhinolophidae	Rhinolophus acuminatus	Acuminate horseshoe bat	LC	
Chiroptera	Rhinolophidae	Rhinolophus affinis	Intermediate horseshoe bat	LC	
Chiroptera	Rhinolophidae	Rhinolophus lepidus	Blyth's horseshoe bat	LC	
Chiroptera	Rhinolophidae	Rhinolophus luctus	Great woolly horsehoe bat	LC	
Chiroptera	Rhinolophidae	Rhinolophus pusillus	Least horseshoe bat	LC	
Chiroptera	Rhinolophidae	Rhinolophus sedulus	Lesser woolly horseshoe bat	NT	
Chiroptera	Rhinolophidae	Rhinolophus stheno	Lesser brown horseshoe bat	LC	
Chiroptera	Rhinolophidae	Rhinolophus trifoliatus	Trefoil horseshoe bat	LC	
Chiroptera	Vespertilionidae	Glischropus tylopus	Common thick-thumbed bat	LC	
Chiroptera	Vespertilionidae	Hesperoptenus blanfordi	Blanford's bat	LC	VU

Table 2 (continued)

Order	Family	Scientific name	English name	IUCN Red List 2014.1	Peninsular Malaysia Red List 2010
Chiroptera	Vespertilionidae	Kerivoula hardwickii	Hardwicke's woolly bat	LC	
Chiroptera	Vespertilionidae	Kerivoula intermedia	Small woolly bat	NT	VU
Chiroptera	Vespertilionidae	Kerivoula minuta	Least woolly bat	NT	
Chiroptera	Vespertilionidae	Kerivoula papillosa	Papillose woolly bat	LC	
Chiroptera	Vespertilionidae	Kerivoula pellucida	Clear-winged woolly bat	NT	
Chiroptera	Vespertilionidae	Kerivoula picta	Painted Woolly Bat	LC	VU
Chiroptera	Vespertilionidae	Miniopterus fuliginosus	Eastern bent-winged bat	LC	
Chiroptera	Vespertilionidae	Miniopterus medius	Medium bent-winged bat	LC	
Chiroptera	Vespertilionidae	Murina cyclotis	Round-eared tube-nosed bat	LC	
Chiroptera	Vespertilionidae	Murina suilla	Brown tube-nosed bat	LC	
Chiroptera	Vespertilionidae	Myotis adversus	Large-footed myotis	LC	
Chiroptera	Vespertilionidae	Myotis horsfieldii	Horsfield's myotis	LC	
Chiroptera	Vespertilionidae	Myotis muricola	Nepalese whiskered myotis	LC	
Chiroptera	Vespertilionidae	Myotis ridleyi	Ridley's myotis	NT	
Chiroptera	Vespertilionidae	Philetor brachypterus	Short-winged pipistrelle	LC	
Chiroptera	Vespertilionidae	Phoniscus atrox	Groove-toothed trumpet- eared bat	NT	VU
Chiroptera	Vespertilionidae	Pipistrellus javanicus	Javan pipistrelle	LC	
Chiroptera	Vespertilionidae	Pipistrellus stenopterus	Narrow-winged pipistrelle	LC	
Chiroptera	Vespertilionidae	Pipistrellus tenuis	Least pipistrelle	LC	
Chiroptera	Vespertilionidae	Scotophilus kuhlii	Lesser Asiatic yellow house bat	LC	
Chiroptera	Vespertilionidae	Tylonycteris pachypus	Lesser bamboo bat	LC	
Chiroptera	Vespertilionidae	Tylonycteris robustula	Greater flat-headed bat	LC	
Dermoptera	Cynocephalidae	Galeopterus variegatus	Sunda flying lemur	LC	
Eulipotyphla	Erinaceidae	Echinosorex gymnura	Moonrat	LC	VU
Eulipotyphla	Erinaceidae	Hylomys suillus	Short-tailed gymnure	LC	
Eulipotyphla	Soricidae	Crocidura malayana	Malayan shrew	LC	
Eulipotyphla	Soricidae	Crocidura negligens	Peninsular shrew	LC	EN
Eulipotyphla	Soricidae	Suncus murinus	House shrew	LC	
Perissodactyla	Rhinocerotidae	Dicerorhinus sumatrensis	Sumatran rhinoceros	CR	CR
Perissodactyla	Tapiridae	Tapirus indicus	Malayan tapir	EN	NT
Pholidota	Manidae	Manis javanica	Sunda pangolin	EN	VU
Primates	Cercopithecidae	Macaca fascicularis	Crab-eating macaque	LC	
Primates	Cercopithecidae	Macaca nemestrina	Southern pig-tailed macaque	LC	
Primates	Cercopithecidae	Presbytis femoralis	Banded surili	NT	
Primates	Cercopithecidae	Presbytis siamensis	White-thighed surili	NT	VU
Primates	Cercopithecidae	Trachypithecus obscurus	Dusky leaf monkey	NT	
Primates	Hylobatidae	Hylobates lar	Lar gibbon	EN	
Primates	Lorisidae	Nycticebus coucang	Slow loris	VU	
Proboscidea	Elephantidae	Elephas maximus	Asian elephant	EN	VU

Table 2 (continued)

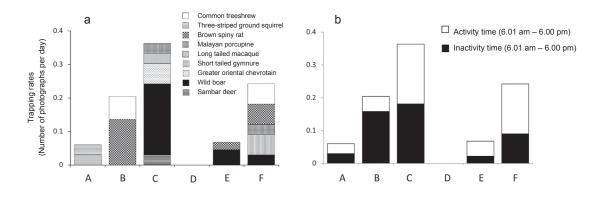
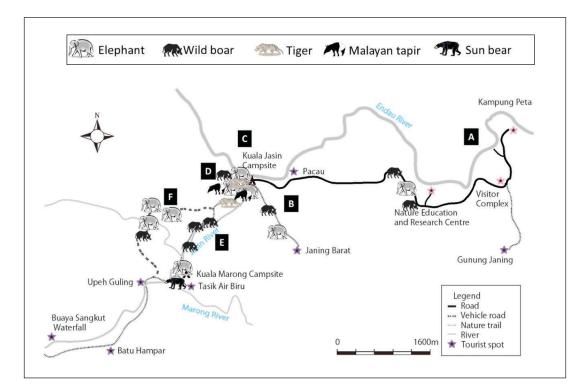
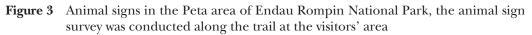

Order	Family	Scientific name	English name	IUCN Red List 2014.1	Peninsular Malaysia Rec List 2010
Rodentia	Hystricidae	Atherurus macrourus	Asiatic brush-tailed porcupine	LC	
Rodentia	Hystricidae	Hystrix brachyura	Malayan porcupine	LC	
Rodentia	Muridae	Berylmys bowersi	Bower's white-toothed rat	LC	EN
Rodentia	Muridae	Chiropodomys gliroides	Pencil-tailed tree mouse	LC	
Rodentia	Muridae	Lenothrix canus	Sundaic lenothrix	LC	
Rodentia	Muridae	Leopoldamys sabanus	Long-tailed giant rat	LC	
Rodentia	Muridae	Maxomys rajah	Rajah Sundaic maxomys	VU	
Rodentia	Muridae	Maxomys surifer	Indomalayan maxomys	LC	
Rodentia	Muridae	Maxomys whiteheadi	Whitehead's Sundaic maxomys	VU	
Rodentia	Muridae	Mus musculus	House mouse	LC	
Rodentia	Muridae	Niviventer cremoriventer	Sundaic arboreal niviventer	VU	
Rodentia	Muridae	Pithecheir parvus	Malay peninsula pithecheir	DD	
Rodentia	Muridae	Rattus annandalei	Annandale's sundaic rat	LC	
Rodentia	Muridae	Rattus argentiventer	Ricefield rat	LC	
Rodentia	Muridae	Rattus exulans	Polynesian rat	LC	
Rodentia	Muridae	Rattus rattus	House rat	LC	
Rodentia	Muridae	Rattus tiomanicus	Malayan field rat	LC	
Rodentia	Muridae	Rhizomys sumatrensis	Indomalayan bamboo rat	LC	
Rodentia	Muridae	Sundamys muelleri	Mueller's sundamys	LC	
Rodentia	Sciuridae	Aeromys tephromelas	Black flying squirrel	DD	
Rodentia	Sciuridae	Callosciurus nigrovittatus	Black-striped squirrel	NT	
Rodentia	Sciuridae	Callosciurus notatus	Plantain squirrel	LC	
Rodentia	Sciuridae	Callosciurus prevostii	Prevost's squirrel	LC	
Rodentia	Sciuridae	Hylopetes platyurus	Jentink's flying squirrel	DD	
Rodentia	Sciuridae	Hylopetes spadiceus	Red-cheeked flying squirrel	LC	
Rodentia	Sciuridae	Iomys horsfieldii	Javanese flying squirrel	LC	
Rodentia	Sciuridae	Lariscus insignis	Three-striped ground squirrel	LC	
Rodentia	Sciuridae	Petaurista elegans	Spotted giant flying squirrel	LC	
Rodentia	Sciuridae	Petaurista petaurista	Common giant flying squirrel	LC	
Rodentia	Sciuridae	Ratufa affinis	Pale giant squirrel	NT	
Rodentia	Sciuridae	Ratufa bicolor	Black giant squirrel	NT	
Rodentia	Sciuridae	Rhinosciurus laticaudatus	Shrew-faced squirrel	NT	
Rodentia	Sciuridae	Sundasciurus hippurus	Horse-tailed squirrel	NT	
Rodentia	Sciuridae	Sundasciurus lowii	Low's squirrel	LC	
Rodentia	Sciuridae	Sundasciurus tenuis	Slender squirrel	LC	

Table 2 (continued)


Order	Family	Scientific name	English name	IUCN Red List 2014.1	Peninsular Malaysia Red List 2010
Scandentia	Ptilocercidae	Ptilocercus lowii	Pen-tailed treeshrew	LC	VU
Scandentia	Tupaiidae	Tupaia glis	Common treeshrew	LC	
Scandentia	Tupaiidae	Tupaia minor	Lesser treeshrew	LC	VU


Table 2 (continued)

The red category status follows the IUCN Red List of Threatened Species (2014). Peninsular Malaysia red category status follows DWNP (2010); NT = near threatened, EN = endangered, VU = vulnerable, LC: least concern, CR: critically endangered, DD: data deficient

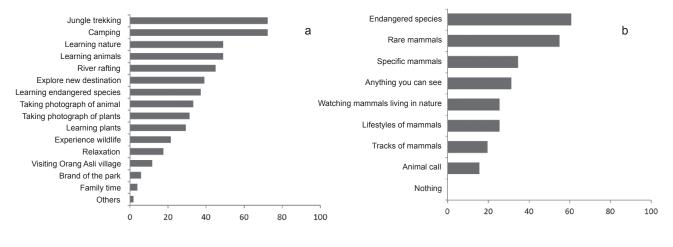
Figure 2 Results from camera traps in the Peta area of Endau Rompin National Park, A–F indicate zones of data collection, trapping rates (number of photographs per day) are shown in graph a and activity time is shown in b

related reasons including learning animals (49.0%), taking photographs of animals (33.3%) and experiencing wildlife (21.6%) were all relatively highly ranked (Figure 4a). Regarding the expectation of wildlife in Endau Rompin National Park, many visitors wanted to see, in descending order (Figure 4b) endangered species, rare mammals, anything they can see and mammals living in nature. Specific mammals that the visitors most hoped to see were elephants (n = 13), tigers (n = 8), sun bears (n = 1), deer (n = 1) and tapir (n = 1).

Visitors' experiences in Endau Rompin National Park

The favourite attractions in Endau Rompin National Park, in descending order were rivers and waterfalls, scenic nature and rainforest (Figure 5). Approximately 30% of the visitors scored animals as most attractive. Average visitor satisfaction (1–5 scale: 1 = worst, 5 = best) in Endau Rompin National Park was 3.8 ± 0.7 .

Tourist experiences regarding wildlife encounters were poor. Only 33.3% of respondents had seen animals during their stay. Furthermore, observed species were limited to otters (family Mustelidae; n = 1), primates [crab-eating macaque (*Macaca fascicularis*) and Dusky leaf monkey (*Trachypithecus obscurus*); n = 7] and wild boar (n = 1). Besides mammals, birds (n = 1), monitor lizards (n = 1) and snakes (n = 1) were also observed (n = number of respondents).


DISCUSSION

Rich mammalian fauna, including threatened and rare species in the tropical rainforests of Endau Rompin National Park can attract wildlife tourists. At least 286 mammalian species occur in Peninsular and East Malaysia (Groombridge & Jenkins 1994), approximately 52% of which inhabit Endau Rompin National Park. However, with the exceptions of wild boars and sambar deer, most species recorded by our camera traps were elusive small mammals. Since small mammals are generally difficult to locate, they will likely not be significant tourist attractions in this situation. However, one of the species trapped, treeshrew, is very common in Malaysia and endemic to Thailand, Malaysia and Indonesia. Therefore, viewing and interpretation of common mammals

may contribute to satisfaction of international tourists, as 31% of visitors were willing to see any kind of animals (Figure 4b). On the other hand, the low abundance of animal signs and the low camera trapping rate in zone A (near the village and visitor complex) suggest a negative relationship between tourist activity and wildlife encounters. Zhou et al. (2013) showed that small mammalian species were affected by indirect pressures associated with site development to facilitate tourism. Therefore, future tourism development should be conducted with the consideration of resident mammals that may be affected when exposed to tourism.

Interviews with key persons of the orang asli community suggested that the number of wild animals has declined in the last few decades. Since most visitors do not observe large and rare mammals, observations of animal signs may play important roles in wildlife-based tourism in South-East Asian rainforest. Although visitors hoped to see rare and endangered mammals, 20% of the visitors were also interested in animal tracks (Figure 4b). The dense forests of many west and central African nations may teem with wildlife, but limited visibility can disappoint visitors. However, forested parks can offer unique experiences, such as the sights, sounds and smells of a dense tropical forest (Lilieholm & Romney 2000, Hill et al. 2014). In the present study, animal signs were found even in the tourist area in Endau Rompin National Park, and this area may therefore be more convenient for mammalian wildlife-based tourism if animal signs are guided. With this is mind, wildlife training provided to park rangers, guides and tour operators could improve visitor satisfaction by channeling visitors to areas with better chances of successful animal viewing (Lilieholm & Romney 2000). Using information technology devices for indirect observation of small and/or nocturnal animals may also be effective (Allison & DeStefano 2006). Besides scientific data, archives of wildlife films and photographs recorded in Endau Rompin National Park may enrich wildlife-based tourism.

Charismatic mammalian species play a key role in attracting visitors to parks (Lindsey et al. 2007). In Africa, tourists are focused on the "big five" (Goodwin et al. 2000). Similarly, tourists visiting rainforests in Malaysia were interested in seeing large and rare mammals. As Endau Rompin National Park is rich in

Percentage of respondents

Figure 4 Reasons for visiting Endau Rompin National Park, (a) preference for viewing wildlife, (b) questionnaire responses

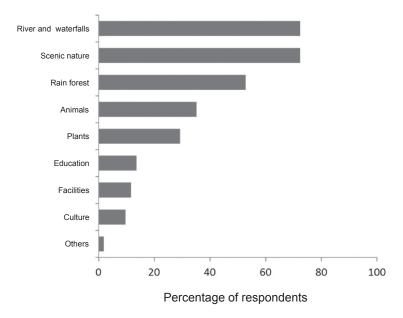


Figure 5 Visitors' favourite feature of Endau Rompin National Park

mammalian fauna and charismatic species, the wild mammals in the area will be attractive to visitors. In this area, Asian elephants were relatively abundant and their signs were easily found and therefore, Asian elephants could become a tourist attraction. However, we need to pay attention to human–wildlife conflict in Kanpung Peta when Asian elephants are treated as an attraction for tourists. Asian elephants are the principal source of conflict in much of Asia (Oswin–Perera 2009). In Johore, the number of elephants showed 50% increase till 1981 till 1983 (70 to 105). Elephants damage crops, and some were killed to prevent serious crop loss (Othman 1986). More than 500 elephants from seven states of Peninsular Malaysia have been captured and translocated to the Royal Belum State Park, Endau Rompin and Taman Negara National Parks (Saaban et al. 2011). Interviews with the local orang asli community suggested that elephants outside national parks may seriously impact the livelihoods of locals. Therefore, efforts must be made to reduce conflicts between elephants and the local community, and also to avoid personal injuries and accidents of local people as well as tourists. Additionally, with the development of tourism, tigers and other animals are threatened by poaching (Noordin 1998). Human–wildlife conflicts should thus be managed in various ways.

In Africa, 70.5% of respondents reported that they had not seen enough wildlife, and that they were disappointed in learning how challenging was to observe large and rare species (Goodwin et al. 1997). In Endau Rompin National Park, visitors most often partook in jungle trekking, during which animals were not the main attraction because of the expectation of scenic nature, adventures and activities (Figures 4a and 4b). Therefore, visitors in Endau Rompin National Park might not expect as much wildlife as those in Africa. However, provision of rainforest biodiversity information to tourists may impact on their emotive and cognitive encounters with rainforests (Hill & Gough 2014). Therefore, effective provision of wildlife information may make tourism in Endau Rompin National Park more attractive. Besides experiences with wildlife in nature, careful tourism management can increase visitor satisfaction and environmental education. Understanding of tourist satisfaction is important for tourism management. However, in general, visitor nationality influences satisfaction (Akama 1996, Okello & Yerian 2009, Mustika et al. 2013). Malaysian tourists in Malaysian national parks are most interested in enjoying themselves and being active, while most western tourists are interested in seeing the flora and fauna (Backhaus 2005). Most visitors to Endau Rompin National Park were en route from Kuala Lumpur to Tioman Island, which is located near the east coast of Peninsular Malaysia. They were interested in experiencing rainforests and tropical animals along their journey. To increase the level of satisfaction of western and local visitors in Endau Rompin National Park, provision of various wildlife information is important. Due to a lack of samples, differences in the perceptions of wildlife among visitors from different South-East Asian countries were

not examined. Understanding of how wildlife tourism could contribute to conservation of rainforest ecosystems for sustainable use is important.

CONCLUSIONS

Endau Rompin National Park has a rich mammalian fauna, including threatened and rare species of the tropical rainforests. Elusive small mammals were not significant tourist attractions, but animal signs and devices for indirect observation of elusive and/or rare animals could become attractions for mammalian wildlife-based tourism. However, extensive evaluation of visitors' awareness, experience and satisfaction are required to assess the potential of a South-East Asian national park for mammalian wildlife tourism. Asian elephants could be a strong tourist attraction for wildlife tourists, but efforts must be made to reduce potential causes of conflict between elephants and the local community. Further study on the appropriate balance between tourism management, livelihood of local people and wildlife conservation is strongly recommended.

ACKNOWLEDGEMENTS

The authors sincerely thank the Johore National Parks Corporation for permission to study wildlife tourism in Malaysia. We thank the Department of Irrigation and Drainage, Malaysia for providing rainfall data of Endau Rompin National Park. We also thank Nordyana, Atiqah, K Fukumori, and L Cao for their help with the fieldwork and interview. Lastly, we thank Radu and the local guides, as well as Herman and other members of the Johore National Parks Corporation. This study was part of a joint research project between Universiti Teknologi Malaysia and Tokyo Metropolitan University.

REFERENCES

- Акама JS. 1996. Western environmental values and naturebased tourism in Kenya. *Tourism Management* 17: 567–574.
- Allison NL & DESTEFANO S. 2006. Equipment and techniques for nocturnal wildlife studies. *Wildlife Society Bulletin* 34: 1036–1044.
- ANGULO E & COURCHAMP F. 2009. Rare species are valued big time. *PLoS ONE* 4: e5215.

- BACKHAUS N. 2005. Tourism and Nature Conservation in Malaysian National Parks. LIT Verlag Münster, Münster.
- BOOTH JE, GASTON KJ, EVANS KL & ARMSWORTH PR. 2011. The value of species rarity in biodiversity recreation: a birdwatching example. *Biological Conservation* 144: 2728–2732.
- CHEN CF & TSAI D. 2007. How destination image and evaluative factors affect behavioral intentions? *Tourism Management* 28: 1115–1122.
- CORBET GB & HILL JE. 1992. The mammals of the Indomalayan region: a systematic review. Oxford University Press, New York.
- DAVISON GWH & KIEW BH. 1987. Mammals of Ulu Endau, Johore, Malaysia. *Malayan Nature Journal* 41: 435–439.
- DWNP (DEPARTMENT OF WILDLIFE AND NATIONAL PARKS PENINSULAR MALAYSIA). 2010. *Redlist of mammals for Peninsular Malaysia*. Kuala Lumpur.
- EAGLES PFJ, BOWRMAN ME & TAO TCH. 2001. Guidelines for Tourism in Parks and Protected Areas of East Asia. IUCN Gland.
- GOODWIN HJ, KENT IJ, PARKER KT & LEADER-WILLIAMS N. 2000. Tourism and protected areas—distorting conservation priorities towards charismatic megafauna. Pp 257–275 in Entwistle A & Dunstone N (eds) *Priorities for the Conservation* of Mammalian Biodiversity. Cambridge University Press, Cambridge.
- GOODWIN HJ, KENT IJ, PARKER KT & WALPORE MJ. 1997. Tourism, Conservation and Sustainable Development Volume 4 Southeast Lowveld, Zimbabwe. Department for International Development, London.
- GROOMBRIDGE B & JENKINS MD. 1994. *Biodiversity Data Sourcebook*. Compiled by the World Conservation Monitoring Centre. World Conservation Press, Cambridge.
- HIGGINBOTTOM K. 2004. Wildlife Tourism: Impacts, Management and Planning. Common Ground Publishing, Gold Coast.
- HILL J CURTIN S & GOUGH G. 2014. Understanding tourist encounters with nature: a thematic framework. *Tourism Geographies* 16: 68–87.
- HILL J & GOUGH G. 2014. Visitor motivations, expectations and satisfaction in a rainforest context: implications for tourism management. Pp 117–133 in Prideaux B (ed) Rainforest Tourism, Conservation and Management: Challenges for Sustainable Development. Routledge, Oxon.
- IUCN (INTERNATIONAL UNION FOR CONSERVATION OF NATURE AND NATURAL RESOURCES). 2014. The IUCN Red List of threatened Species. Version 2014.1.
- KIEW BH, DAVISON GWH & KIEW R. 1987. The Malaysian heritage and scientific expedition: Endau–Rompin, 1985–1986. Malayan Nature Journal 41: 83–92.
- KNIGHT J. 2010. The ready-to-view wild monkey: the convenience principle in Japanese wildlife tourism. *Annals of Tourism Research* 37: 744–762.
- LAURANCE WF, ALONSO A, LEE M & CAMPBELL P. 2006. Challenges for forest conservation in Gabon, Central Africa. *Futures* 38: 454–470.

- LILIEHOLM RJ & ROMNEY LR. 2000. Tourism, national parks and wildlife. Pp 137–151 in Boyd SW & Butler RW (eds) *Tourism and National Parks: Issues and Implications*. John Wiley & Sons, Chichester.
- LINDSEY PA, ALEXANDER R, MILLS MGL, ROMAÑACH S & WOODROFFE R. 2007. Wildlife viewing preferences of visitors to protected areas in South Africa: implications for the role of ecotourism in conservation. *Journal of Ecotourism* 6: 19–33.
- MEDWAY L. 1983. The Wild Mammals of Malaya (Peninsular Malaysia) and Singapore. Oxford University Press, Kuala Lumpur.
- MOHAMED H & ZAKARIA-ISMAIL M. 2005. The Forests and Biodiversity of Selai, Endau Rompin. Perbadanan Taman Negara Johor, Johor.
- MUSTIKA PLK, BIRTLES A, EVERINGHAM Y & MARSH H. 2013. The human dimensions of wildlife tourism in a developing country: watching spinner dolphins at Lovina, Bali, Indonesia. *Journal of Sustainable Tourism* 21: 229–251.
- NEWSOME D, DOWLING RK & MOORE SA. 2005. Wildlife Tourism. Channel View Publications, Clevedon.
- NOORDIN S. 1998. Potential threats of poaching of large mammals in Belum and Taman Negara. *Journal of Wildlife and Parks* 16: 135–138.
- NUMATA S, OKUDA T, SUGIMOTO T ET AL. 2005. Camera trapping: a non-invasive approach as an additional tool in the study of mammals in Pasoh Forest Reserve and adjacent fragmented areas in Peninsular Malaysia. *Malayan Nature Journal* 57: 29–45.
- OKELLO MM & YERIAN S. 2009. Tourist satisfaction in relation to attractions and implications for conservation in the protected areas of the Northern Circuit, Tanzania. *Journal of Sustainable Tourism* 17: 605–625.
- OSWIN-PERERA BMA. 2009. The human-elephant conflict: a review of current status and mitigation methods. *Gajah* 30: 41–52.
- OTHMAN SB. 1986. Elephant population, distribution and population growth in the state of Johore. *Journal of Wildlife and Parks* 5: 93–102.
- REYNOLDS PC & BRAITHWAITE D. 2001. Towards a conceptual framework for wildlife tourism. *Tourism Management* 22: 31–42.
- INSTITUTO DI ECOLOGIA APPLICATA 2006. Ecological data set and GIS based models: a tool for biodiversity based conservation in South-East Asia. Southeast Asian Mammal Databank, Rome.
- SAABAN S, OTHMAN NB, YASAK MNB, NOR BM, ZAFIR A, & CAMPOS-ARCEIZ A. 2011. Current status of Asian elephants in Peninsular Malaysia. *Gajah* 35:67-75.
- SOEPADMO E. 1987. Structure, above ground biomass and floristic composition of forest formations at Gunung Janing Barat, Ulu Endau, Johore, Malaysia. *Malayan Nature Journal* 41: 275–290.
- STECKER B. 1996. Ecotourism: Potential for Conservation and Sustainable Use of Tropical Forest—A Case Study on The National Parks, Taman Negara and Endau-Rompin in

Malaysia. Deutsche Gesellschaft für Technische Zusammenarbeit, Eschborn.

- TAPPER R. 2006. Wildlife Watching and Tourism: A Study on the Benefits and Risks of a Fast Growing Tourism Activity and Its Impacts on Species. UNEP/CMS Secretariat, Bonn.
- UDAYA-SEKHAR N. 2003. Local people's attitudes towards conservation and wildlife tourism around Sariska Tiger Reserve, India. *Journal of Environmental Management* 69: 339–347.
- Wong KM, Saw LG & Kochummen KM. 1987. A survey of the forests of the Endau Rompin, Peninsular Malaysia: principal forest types and floristic notes. Malayan Nature Journal 41: 125–144.
- ZHOU Y, BUESCHING CD, NEWMAN C, KANEKO Y, XIE Z & MACDONALD DW. 2013. Balancing the benefits of ecotourism and development: the effects of visitor trail-use on mammals in a protected area in rapidly developing China. *Biological Conservation* 165: 18–24.