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The knowledge and prediction of spatial distribution of forest fire is essential for improving fire prevention 
strategies in forest areas. Forest fire susceptibility maps of the Babolrood Watershed in the Mazandaran 
Province of Iran were obtained from random forest, artificial neural network and logistic regression models. 
The important factors identified to affect forest fires include first and secondary topography, climate, 
vegetation cover and related human activities. Forest fire susceptibility maps were prepared using three 
models and the accuracy of the results was evaluated using validation datasets, kappa coefficient (K) and 
area under the receiver operating characteristic curve (AUC). All three methods produced forest fire 
susceptibility maps of reasonable accuracy; artificial neural network model with K = 0.61 and AUC = 0.88; 
random forest model with K = 0.64 and AUC = 0.93 and logistic regression model with K = 0.52 and AUC 
= 0.79. These results showed that the accuracy of forest fire susceptibility map obtained from the random 
forest method was slightly higher. According to the random forest results, 6.18% and 16.08% of the study 
area had very high and high potential for fire occurrence respectively. In general, the aforementioned 
methods can be applied for forest fire susceptibility mapping in forest areas with similar conditions. 
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INTRODUCTION

Fire plays an important role in natural lands 
especially in vegetation succession and landscape 
deformation (Hong et al. 2018). However, 
wildfires are one of the most devastating natural 
resource crises that endanger human life, 
damage forest resources and biodiversity, the 
atmosphere, financial resources and other 
environmental and recreational values. Forest 
fire has had widespread impacts in many 
countries around the world such as Indonesia, 
Brazil, Mexico, Canada, United States, France, 
Turkey, Spanish, Greece and Italy (Kanga et al. 
2014, Astiani et al. 2018).
	 It was predicted that due to the continual 
occurrence of climate change the risk of forest 
fire will increase (Brown et al. 2017). Due 
to the multitude of forest fires, fire hazard 
zoning is an essential component in planning 
for the protection of forested areas (Chuvieco 
et al. 2014). The ability to predict the spatial 
distribution of fire is essential for improving fire 

prevention strategies and tactics. Recently, the 
spatial prediction of forest fire hazards became 
increasingly important to protect forest resources 
and fire management at different scales (You et 
al. 2017). It is important to develop appropriate 
and reliable forest fire susceptibility prediction 
models for forest management, the deployment 
of necessary facilities and a more appropriate 
fire prevention and response. Despite many 
progresses, it is still difficult to develop accurate 
prediction models for forest fires (Pettinari 
& Chuvieco 2017) because forest fire is a 
nonlinear and complex process influenced by 
many parameters. The occurrence of fire not 
only caused by combustion factors and biomass 
fuels, but also by weather and topography. 
Geographical Information System (GIS)-based  
forest fire susceptibility assessment could be 
used to develop forest fire hazard zoning maps 
that linked environmental factors to areas with 
the potential for forest fires, thereby enabling 
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hazard potential mapping in different ecosystems 
(Helfenstein & Kienast 2014). Different 
regression models were proposed to predict 
the risk of forest fires such as geographically-
weighted regression (Koutsias et al. 2010), 
logistic regression (Arndt et al. 2013), and linear 
regression (Oliveira et al. 2012). In recent years, 
machine learning algorithms such as neural 
networks (Satir et al. 2016) and random forests 
(Oliveira et al. 2012) have been considered for 
forest fire susceptibility assessment. However, 
the best method or technique for forest fire 
modelling is still debatable. Therefore, the 
comparison of methods and techniques to obtain 
appropriate conclusions for forest fire prediction 
is important and essential. Various studies had 
shown that vegetation, topography and climatic 
factors, and the use of fire history data were the 
most important variables in the modeling of 
forest fire susceptibility (Brown et al. 2017, Hong 
et al. 2018). 
	 Literature review on forest fire research 
indicated that artificial neural network, random 
forest and logistic regression methods were used in 
many studies to map forest fire susceptibility. The 
main objective of this study was to apply these 
methods for the development of a conceptual 
scheme for the preparation of the forest fire 
susceptibility and fire progress potential map for 
Babolrood watershed in Mazandaran Province 
of Iran. The variables affecting forest fire 
susceptibility and fire progress potential were 
identified and their importance were evaluated 
using the three predictive models and compared 
for accuracy. 

MATERIALS AND METHODS

Study area

Babolrood watershed (36° 02'–36° 22' N and 
52° 38'–52° 55' E) with an area of 51725 ha is 
located in Mazandaran Province, a northern 
region of Iran (Figure 1). It has a mean annual 
temperature and rainfall of 14.1 °C and 782 mm, 
respectively and the climate type is semi-humid 
based on the Amberge climatic method. The 
study focused on the fire season from June to 
September between 2012 to 2019 when the 
mean monthly rainfall was 43.3 mm and mean 
temperature was 21.9 °C. The meteorological 
data were obtained from the Meteorology Office 
of Mazandran Province.

	 About 80% of the study area was covered by 
forests up to 2800 m above sea level. The forest 
consisted of temperate deciduous broadleaf 
with uneven-aged seed-borne structures. The 
dense forests covered up to about 1800 m 
above sea level. Plant species richness were high 
and includes alder, boxwood, hornbeam, sate-
plum, spruce, walnut, oak, elm and beech. At 
higher altitudes the lower quality beech forest 
was replaced by oak species. Data records were 
obtained from the Resource Management Center 
of Babolrood Watershed.

Data collection and preprocessing

Forest fire database

Figure 2 shows the study methodology within a 
framework. The forest fire inventory map of the 
study area was compiled using documentation 
from Natural Resources Office of Mazandaran 
Province, national reports and Moderate-
Resolution Imaging Spectro Radiometer 
satellite images (http://earthdata.nasa.gov/
firms). Multiple field surveys and screening 
processes were conducted to remove records 
with inaccurate locations. Detailed data showed 
that between 2012–2019, 297 notable forest fires 
represented in the ignition fire points vector 
format were recorded in the study area. The fire 
occurred during the dry season from late May to 
middle of October. According to Department of 
Natural Resources and Watershed Management 
data, 95% of the fires were human-caused factor. 
Forest fire locations were randomly divided into 
two datasets. Out of the 297 forest fire locations, 
207 (70%) were used to prepare and operate the 
models and the remaining 90 (30%) were used 
to evaluate the accuracy of the models (Jaafari 
et al. 2017).

Fire ignition factors

Forest fires strongly depend on fire ignition 
factors such as topography (i.e. slope and 
aspect), fuel (i.e. vegetation or normalised 
difference vegetation index) and climate (i.e.  
temperature and rainfall) (Pourtaghi et al. 2016, 
Tien Bui et al. 2017). In the study, 22 factors were 
selected as study parameters. These independent 
variables were slope, slope aspect, elevation, plan 
curvature, profile curvature, effective air flow 
height, heat loading index, topographic position 
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Figure 1 	 Maps of (a) Babolrood watershed for the case study (b) location of 
Mazandaran Province (shaded) in the northern region of Iran and 
(c) Mazandaran Province, with the watershed (shaded) 

index, topographic wetness index, slope length 
and steepness factor, solar radiation, wind effect, 
distance to villages, roads, and rivers, landuse/

cover  type, normalised difference vegetation 
index, forest density, soil texture, soil depth, 
rainfall and temperature. 

Figure 2 	 Methodological framework adopted for forest fire susceptibility mapping
	 LS = slope length and steepness, NDVI = normalized difference vegetation index, 
	 LR = logistic regression, RF = Random Forest, ANN = artificial neural network

RL RF ANN
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	 Slope, aspect, elevation, plan curvature, 
profile curvature (Costa-Cabral & Burges 1994), 
heat loading index (McCune & Keon 2002), 
topographic position index (Guisan et al. 1999), 
effective air flow height, topographic wetness 
index, slope length and steepness factor, solar 
radiation and wind effect (Boehner & Antonic 
2009) maps were extracted from a digital 
elevation model (DEM) with a 20 m2 pixel size. 
The source of the DEM was from the digital 
contour data (10 m contour spacing) prepared 
by the National Cartographic Center using 
SAGA-GIS software. The normalised difference 
vegetation index (NDVI) is one of the indicators 
of vegetation conditions in each region and is 
calculated based on equation 1. 

	 NDVI = (NIR - IR) / (NIR + IR)	 (1)

where IR = reflectance measured in the visible 
region and NIR = reflectance measured in near-
infrared region (Tien Bui et al. 2017).
	 The landuse/cover and normalised difference 
vegetation index maps were extracted from 
Landsat OLI satellite images of 7th May 2018 
of the United States Geological Survey archive 
(http://earthexplorer.usgs.gov). The initial 
satellite images were preprocessed through 
geometric and atmospheric corrections while 
the landuse/cover map of the study area were 
later prepared by classification process using the 
neural network classification method in IDRISI 
Selva software with an overall accuracy of 78.6%. 
Forest density and soil maps were collected from 
the Resource Management Center of Babolrood 
Watershed (2008).
	 For this study, the annual rainfall and 
temperature maps were prepared using the 
inverse distance weighted interpolation method 
in GIS (Hong et al. 2018) based on data from 16 
meteorological stations in 1997–2016 from the 
Meteorology Office of Mazandaran Province. 
Road networks and villages were extracted 
from Google Earth and the proximity maps 
were produced by buffering villages and road 
segments using ArcGIS software. River networks 
were extracted from the digital elevation model 
and the map of proximity to rivers was produced 
by buffering river sections. Figure 3 shows maps 
of the independent variables. The average 
temperature of the study area ranged from 
10.6–17.5 °C and average annual rainfall ranged 
from 555.0–1081.9 mm. 

	 In order to better understand fire behaviour 
affected by the variables in the study, the 
descriptive statistics of the independent variables 
(Table 1) were examined in relation to fire 
location. In locations where fires occurred, the 
average elevation was about 710.21 m above 
sea level with a slope of 25.44%. Fires usually 
occurred further from the river and closer to 
villages and roads. Also in these areas, heat 
loading index, normalised difference vegetation 
index, wind effect index and temperature were 
higher while rainfall was lower.

Method and models	

In the artificial neural network method, the 
multilayer perceptron neural network (MLP-Net) 
structure was chosen to be utilised (Satir et al. 
2016). Each MLP-Net consisted of input, hidden, 
and output layers, with an activation function 
connecting the input and hidden layers and a 
linear function connecting the hidden and output 
layers (Haykin 1998). The back-propagation 
algorithm was used because it was proven to work 
in complex real-world problems. The nonlinear 
sigmoid activation function was likewise chosen, 
with the number of neurons set at 22, learning 
rate of 0.2 and 1000 training iterations (Tien Bui 
et al. 2016).
	 Random forest is an ensemble learning 
technique which required two parameters for 
implementation based on the number of trees and 
the number of variables. It was suggested to pick a 
large number of trees and the square root of the 
dimensionality of the input space for the number 
of variables (Micheletti et al. 2014). For forest fire 
modelling, bootstrap subsets were generated from 
the training dataset, each subset was used to build 
an individual decision tree. In addition, 100 trees 
were used to ensure a stable result as suggested by 
Ghimire et al. (2012) and Stevens et al. (2015). 
The size of the decision tree was four including 
the root node and 11 nodes. Finally, the random 
forest model was formed by combining all decision 
tree classifiers.
	 In the logistic regression model, numbers close 
to 0 indicated a lower probability of occurrence 
and numbers near 1 indicated a higher probability 
of occurrence. The dependent variable (Y) was 
calculated using the following equation 2.

	 Y = Logit (p) =	 Ln (p /(1 – p)) = Co + (C1X1) 

		  + (C2X2) + ... + (CnXn)       (2)
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Figure 3 	 Forest fire variables: (a) aspect, (b) slope, (c) elevation, (d) plan curvature, (e) profile curvature, 
(f) effective air flow height (EAFH), (g) heat loading index (HLI), (h) topographic position 
index (TPI), (i) topographic wetness index (TWI), (j) slope length and steepness factor (LS 
factor), (k) solar radiation, (l) wind effect, (m) distance of villages (n) distance of roads (o) 
distance of rivers (p) land use, (q) normalized difference vegetation index (NDVI), (r) forest 
density, (s) soil texture, (t) soil depth, (u) temperature, (v) rainfall

Table 1      Descriptive statistics for the independent variables at fire location points

Variables Average Minimum Maximum Standard deviation

Aspect (°)
Distance to river (m)
Distance to road (m)
Distance to village (m)
Effective air flow height
Elevation (m)
Forest density
Heat loading index
Land use/cover type
Slope length and steepness factor
Normalized ifference vegetation index
Plan curvature
Profile curvature
Rainfall (mm)
Slope (%)
Soil depth
Soil texture
Solar radiation
Temperature (°C)
Topographic position index
Topographic wetness index
Wind effect

187.11
6747.97
859.49

13902.52
318.34
710.21

2.30
0.82
2.80
5.80
0.51
-0.30
-0.35

842.78
25.44
1.12
1.66
0.04

16.16
0.35
0.16
1.09

1.13
250.00
25.00
48.00
6.36

74.81
0.00
0.41
2.00
0.00
0.27
-9.43

-14.43
635.77

1.30
1.00
1.00
0.00

11.71
-64.39
-3.12
0.74

359.65
10000.00
1800.00
2200.00
1704.58
3011.40

3.00
1.10
5.00

39.56
0.58

13.99
13.35

1072.99
84.74
3.00
4.00
4.62

18.43
91.11
9.38
1.34

117.31
4051.05
1603.86
8814.21
346.26
663.06

1.03
0.12
0.94
6.07
0.06
3.34
3.72

91.04
14.68
0.38
1.02
0.31
2.00

22.55
1.77
0.15
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where p = probability of the dependent variable, 
(p/(1 – p)) = odds ratio or probability, Co = 
constant value or intercept, (C1, C2, ..., Cn) 
= coefficients of the independent variables 
which represented the contribution of each 
independent variable to the probability value 
p, (X1, X2, ..., Xn) = independent variables, 
e.g., slope, aspect, elevation. The importance 
of the variables (C1, C2, ..., Cn) was determined 
by the training sample values entered into the 
regression model.
	 Pixel values ​​of raster maps of the independent 
variables were extracted using Spatial Analyst 
Tools in ArcGIS 10.8 software and entered into 
Statistica 10 software along with the training data. 
The probability of fire occurrence was modeled 
using artificial neural network and random forest 
algorithms and the results were converted into a 
raster map in the GIS environment. Independent 
variables were entered into R software version 
3.5.0 along with the training data to generate the 
logistic regression model of fire susceptibility and 
the modelling result was converted into a raster 
map. Finally, the results of the three methods 
were reclassified into 5 classes using the Jenks 
natural breaks method.
	 In machine learning, comparison of models 
should take into account the cost of error, thus the 
use of kappa coefficients (K) is recommended. 

Performances of forest fire prediction models 
were considered to be more realistic if their K 
values were closer to 1 (Thach et al. 2018). The 
area under the ROC curve was used to determine 
the accuracy of forest fire susceptibility mapping 
models (Sahana & Ganaie 2017). The area under 
the ROC curve values approaching 1 indicated 
an increasingly accurate model. In addition, the 
Wilcox and Pearson correlation tests were used to 
compare and quantify differences with regard to 
the spatial distribution of fire risk classes in forest 
fire susceptibility maps obtained from different 
methods. 

RESULTS

Artificial neural network

Based on the forest fire susceptibility map 
obtained from the artificial neural network 
model (Figure 4 (a)), About 9.21% of the study 
area showed very high risk of fire occurrence and 
10.11% of the study area showed very low risk of 
fire occurrence (Figure 5). Figure 4 (b) showed 
the root mean square error (RMSE) values in 
1000 training iterations. The root mean square 
error decrased from iteration 14 to the lowest 
value at iteration 600, after which it remained 
unchanged. 

Figure 4 (a) Forest fire susceptibility map for Babolrood watershed obtained from the artificial neural 
network model, (b) root mean square error (RMSE) vs iteration number
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Random forest

Figure 6 showed the forest fire susceptibility map 
obtained from the random forest model. Based 
on the results, 6.18% of the study area showed 
very high fire potential and about 16.08% of the 
study area showed high potential (Figure 5).

Logistic regression

Temperature, heat loading index, topographic 
wetness index, rainfall and solar radiation, 
respectively, were the most important variables 
(Figure 8). The results of forest fire susceptibility 
map based on linear regression (Figure 7) 
showed that 5.92% of the study area had very 
high risk of fire occurrence and 14.90% of the 
study area had high risk (Figure 5).

Figure 6 	 Forest fire susceptibility map for 
Babolrood Watershed obtained 
from the random forest model

Figure 7 	 Forest fire susceptibility map for 
Babolrood Watershed obtained 
from the logistic regression model

Figure 5 	 Spatial prediction of fire occurrence in relation to risk classification for three models 
 	 ANN = artificial neural network, RF = random forest, LR = logistic regression

Very high  High Moderate Low Very low

  ANN	 RF	 LR
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Comparison of different models for fire 
susceptibility mapping

While the three models involved different internal 
algorithms for determining the importance of the 
independent variables, the models shared several 
same variables most important in mapping fire 
susceptibility (Figure 8).
	 In the random forest model, rainfall, 
temperature, landuse or cover, solar radiation 
and distance from villages were the most 
important variables in mapping fire risk. In the 
artificial neural network model, temperature, 
rainfall, distance from villages, heat loading index 
and landuse or cover were the most important 
variables while in the logistic regression model, 
the most important variables were temperature, 
heat loading index, solar radiation, topographic 
wetness index and rainfall. The positive or 

negative effects of these variables on fire 
occurrence were similar across the models. 
	 In the artificial neural network model, a 
larger area was classified under very high and 
high risk of fire occurrence while the logistic 
regression model gave the smallest area under 
very high and high risk of fire occurrence 
(Figure 5). There was significant difference 
between forest fire susceptibility maps in the 
spatial distribution of fire risk classes (p = 0.001 
for all three pairwise comparisons using Wilcox 
test). Correlation analysis between the three 
forest fire susceptibility maps showed significant 
correlation at the 0.01 level (Table 2). The map 
obtained from the random forest model was 
more than 59 and 43% similar with the maps 
obtained from the artificial neural network 
and logistic regression models respectively. The 
similarity of artificial neural network model 

Table 2 	 Pearson correlations between forest fire susceptibility maps obtained 
from the random forest (RF), artificial neural network (ANN) and 
logistic regression (LR) models

RF ANN LR

RF
1 0.594** 0.432**

0.000 0.000

AN 0.594** 1 0.241**

N 0.000 0.000

              ** Correlation is significant at the 0.01 level (2-tailed).

Figure 8 	 The importance of different variables in the three models of forest fire 
susceptibility mapping 

	 RF = random forest, ANN = artificial neural network, LR = logistic regression
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Im
po

rt
an

ce
 v

al
ue

 (
%

)

Asp
ec

t

Dist
an

ce
 of

 ri
ve

r

Dist
an

ce
 of

 ro
ad

Dist
an

ce
 of

 vi
lla

ge

Effe
cti

ve
 ai

r fl
ow

Elev
ati

on

Fo
re

st 
den

sit
y

HLI
Lan

duse
LS f

ac
to

r
NDVI

Plan
 cu

rv
atu

re

Pro
file 

cu
rva

tu
re

Rain
fal

l

Slo
pe

So
il d

ep
ht

So
il t

ex
tu

re

So
lar

 ra
diat

ion

Tem
per

atu
r

TPI
TW

I

W
in

d ef
fec

t

25

20

15

10

5

0



Journal of Tropical Forest Science 33(2): 173–184 (2021) 	 Eslami R et al.

182© Forest Research Institute Malaysia

results with logistic regression model results was 
24%.
	 All the models had good predictive ability 
(Table 3), with the best being the random forest 
model (AUC = 0.93). Furthermore, the K value at 
0.64 indicated a substantial agreement between 
observed and predicted fires. The artificial neural 
network model was second best in predictive 
ability (AUC = 0.88, K = 0.88) while the logistic 
regression model had fair predictive ability (AUC 
= 0.79, K = 0.52).

dependence of the dwellers on these areas and 
population growth. Distance to roads and villages 
were also important forest fire susceptibility 
factors as deliberate fire were more likely to 
occur near roads and villages (Hong et al. 2017). 
Proximity to rivers and the resulting increase in 
tourist traffic increased forest fire susceptibility 
in other studies (Semeraro et al. 2016, Pourtaghi 
et al. 2016) but our regional surveys ruled out 
this factor for Babolrood Watershed. Conversely, 
increasing proximity to river could increase 
relative humidity, soil moisture, fuel moisture 
content and evapotranspiration thus reducing 
the probability of fire occurrence (Hong et al. 
2018). Vegetative cover became fuel material for 
fire in dry and dense conditions. The normalised 
difference vegetation index and forest density 
as major factors in the fire regime related to 
tree cover contributed to fuel load variability 
(Holsinger et al. 2016). Topography affects fire 
behaviour (Adab et al. 2013, Pourtaghi et al. 
2016). The positive correlation between slope 
and the probability of a fire occurrence in our 
study was in line with findings by Hong et al. 
(2018) and could be attributed to the greater 
fuel load higher up the slopes of the study area. 
Aspect factor was an important explanatory 
variable for fire occurrence in the Deccan Plateau 
in India where the drier, hotter and vegetation-
sparse southern area was predicted to be at 
high risk (Prasad et al. 2008). Of the climatic, 
anthropogenic, vegetation and topographic 
factors influencing forest fire susceptibility, 
important secondary topographic variables had 
been identified and used (Pourtaghi et al. 2016, 
Hong et al. 2018, Sahana & Ganaie 2017). The 
findings from this study showed that heat loading 
index, solar radiation, topographic wetness index 
and wind effect were very important variables in 
all three models. The topographic wetness index 
had an impact on hydrological conditions and 
area fire susceptibility (Tien Bui et al. 2016). Heat 
loading index and solar radiation were indexes 
that expressed surface temperature as influenced 
by solar radiation (Hong et al. 2018).
	 Different testing models revealed some 
advantages and disadvantages that caused 
errors in the results. In these models, input 
data types, scales and local conditions might 
cause prediction errors. Therefore, comparing 
and using different data and new models would 
improve the efficiency of fire prediction and 
reduce uncertainties. The results of the forest 

Table 3 	 The area under the ROC curve (AUC) 
and kappa coefficient for the three forest 
fire susceptibility models on the validation 
dataset

Model Kappa coefficient AUC

ANN 0.61 0.88

RF 0.64 0.93

LR 0.52 0.79

ANN = artificial neural network, RF = random forest, 
LR = logistic regression

DISCUSSION

The work involved comparative study of three 
data mining approaches, i.e. artificial neural 
network, random forest and logistic regression 
respectively for forest fire susceptibility and 
progress potential of fire mapping. One of 
the most important parts of this study was to 
determine the best variables for modelling 
fire occurrence. As reported by Randerson et 
al. (2006), temperature was one of the most 
important factors affecting fire occurrence. High 
temperatures increased evapotranspiration and 
humidity and thus increased the probability of fire 
occurrence (Gao et al. 2015). Rainfall conversely 
reduced the probability of fire occurrence by 
adjusting the amount of atmospheric and soil 
moisture. In the present study, the maximum risk 
of fire occurrence was found in areas with high 
temperature and low rainfall, which concured 
with findings from previous studies (Pourtaghi et 
al. 2016, Tien Bui et al. 2016, Tien Bui et al. 2017). 
High fire susceptibility could be attributed to 
environmental conditions such as high fuel loads 
and other fuel hazards that predisposed severe 
wildfires. The impact of human factors could be 
linked to the economic and social challanges 
faced by Iran’s natural areas, including extreme 



Journal of Tropical Forest Science 33(2): 173–184 (2021)	 Eslami R et al.

183© Forest Research Institute Malaysia

fire susceptibility mapping were compared with 
the forest fire validation dataset to assess the 
spatiality of forest fires among the risk classes. 
While all the three methods produced forest fire 
susceptibility maps with acceptable accuracy the 
forest fire susceptibility map derived from the 
random forest method was more accurate than 
other methods. The good performance of the 
random forest model could be due to the fewer 
parameters required and easy determination 
of the parameters (Pal 2005). In addition, the 
algorithm used was a flexible method and could 
be improved by changing the number of trees 
and nodes to improve the result. The random 
forest model had many advantages over other 
multivariate regression or classification methods. 
There was no requirement for assumptions 
about the distribution of explanatory variables. 
It allowed the use of categorical and numerical 
variables briefly without reusing index variables, 
and showed interaction and nonlinearity between 
variables. Another advantage of the random 
forest algorithm was the determination of the 
significance for the input variables.
	 More than 22% of the study area was classified 
under high and very high risk of wildfires. It was 
evident that areas close to villages and roads 
with dense forest cover and the south and west 
slope aspect were more susceptible to fire. The 
forest fire susceptibility map prepared could 
be used by fire managers, forestry officials 
and emergency departments for designating 
and locating potential fire-susceptible area 
planning and allocation purposes, watch tower 
site selection and construction, firebreaks 
construction, resource allocation, fire control 
and management-related work.
	
CONCLUSIONS

The results of this study provided significant 
contribution to forest fire literature. The 
proposed conceptual scheme could be prescribed 
for other climate types, forest species, tree 
composition and percentage of crown cover 
throughout the world by selecting classification 
parameters and variables reflected in the local 
environment.
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