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INTRODUCTION

More than 72% of plantations in Brazil are planted 
with Eucalyptus spp. and Corymbia spp. The average 
yield of eucalypts in Brazil is 36 m³ ha-1 year-1  
while in Australia, it is 22 m³ ha-1 year-1 (IBÁ 2015, 
2016). In general, most eucalypt wood is used for 
pulp, industrial firewood and charcoal, although  
its use for construction lumber, plywood panels  
and treated wood is also important (IBÁ 2016). 
	 Colour is very important to determine the 
final use of eucalyptus wood, and to evaluate this 
characteristic, visible spectroscopy can be a rapid 
and non-destructive alternative to verify adequate 
application, for example, in construction or 
furniture. The industry typically considers 
wood colour and grain pattern to be important 
features for large-scale use of any species. These 
features can increase the commercial value of 
some species based on consumer preferences 
for colour patters of certain species such as  
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mahogany, cherry or sucupira (Camargos & 
Gonçalez 2001). Consumers have mistaken E. 
grandis as mahogany from its rose–red colour 
(Gonçalez et al. 2006). Colour classification of 
species and natural variability of the tree are 
important for manufacturers and consumers 
of parquet floors and furniture because they 
influence the aesthetic characteristics and 
final value of the product (Defoirdt et al. 2012, 
Csordós et al. 2014). 
	 Near-infrared (NIR) spectroscopy is a non-
destructive technique that can be applied on 
an industrial scale to monitor wood processing 
and also for classification of some characteristics 
of raw material (Tsuchikawa & Schwanninger 
2013). This technique has been effectively used to 
discriminate species using wood and leaf samples 
(Pastore et al. 2011, Espinoza et al. 2012, Nisgoski 
et al. 2015a), and data for classification can be 
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analysed after different pre-treatment methods 
(Tominaga 1999, Tsuchikawa et al. 2003, Oliveira 
et al. 2015). For Eucalyptus, Castillo et al. (2008) 
used NIR spectroscopy for fast discrimination of 
Eucalyptus globulus and E. nitens.
	 The technique can also be applied to 
distinguish different geographical origins 
(Sandak et al. 2011, Nisgoski et al. 2016), 
although some responses are influenced by 
hybridisation (Meder et al. 2014) and genetic 
factors (Hein & Chaix 2014). When wood 
material is analysed, face, shape and particle 
size influence the spectra, and measurements 
taken at different points of a sample can produce 
variations (Brunner et al. 1996, Braga et al. 2011, 
Nisgoski et al. 2015b) but still allow distinction 
from other species.
	 Considering the commercial importance 
of eucalyptus in Brazil, the objective of the 
present study was to combine visible and NIR 

spectroscopy to discriminate species based on 
solid samples. 

MATERIALS AND METHODS

Wood samples of Corymbia spp. and Eucalyptus 
spp. lumber were obtained from Prema, a forestry 
company in the city of Rio Claro, São Paulo. 
Table 1 shows the data of the species studied and 
Figure 1 illustrates them. For each species, four 
samples were analysed and 10 spectra of each 
were obtained by visible and NIR spectroscopy 
from the longitudinal surface, for a total of 40 
spectra per species.
	 Colorimetric evaluation was performed 
using spectrophotometer with a spectral range 
from 400–750 nm, D65 light source and 10° 
observation angle (CIELab standard). Forty 
measurements of each species were taken, from 
which lightness (L*), green–red chromatic 

Table 1	 Geographic location and density of species studied

Species Origin
(municipality, state)

Planted Average wood density* (kg m-3)

Corymbia citriodora Floresta Estadual de Pederneiras, São Paulo
(22°22' S, 40°44' W)

1966 980

Corymbia maculata Floresta Estadual de Rio Claro, São Paulo 
(22° 25' S, 47° 33' W)

1975 810

Eucalyptus dunnii Reflorestamento Klabin, Telêmaco Borba, Paraná 
(24° 16' S, 50° 31' W)

1987–1990 750

Eucalyptus 
microcorys 

Floresta Estadual de Rio Claro, São Paulo
(22° 25' S, 47° 33' W)

1975 770

Eucalyptus saligna Fazenda Mariana, Araras, São Paulo
(22° 17' S, 47° 15' W)

1960 690

Eucalyptus 
tereticornis

Fazenda Santa Elisa, Campanha, Minas Gerais
(22° 25' S, 47° 33' W)

1970 950

Eucalyptus viminalis Fazenda Santa Maria, Guarapuava, Paraná
(25° 7' S, 51° 30W)

1990 720

*Density is based on mass and volume at 12% moisture content (Ballarin et al. 2015)

Figure 1	 Wood species used in discrimination study: Corymbia citriodora (1), C. maculata (2), Eucalyptus dunnii 
(3), E. microcorys (4), E. saligna (5), E. tereticornis (6) and E. viminalis (7)
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coordinate (a*) and blue–yellow chromatic 
coordinate (b*) were obtained. The data 
were analysed using descriptive statistics and 
regression analysis. In addition, the Tukey test 
was performed to verify the possible grouping 
of species in each parameter. Analysis was 
performed with 95% probability.
	 NIR analyses were performed in a Bruker 
Tensor 37 spectrometer equipped with integrating 
sphere and operating in reflectance mode. There 
were 64 scans with resolution of 1 nm and a 
spectral range of 1000–2500 nm. Spectral analysis 
was based on ASTM E1655-05 (ASTM 2000). 
	 The Unscrambler X chemometric program 
(CAMO Software AS, version 10.1) was used to 
analyse the data. Exploratory modelling was done 
by analysing the score and factor loading graphs 
obtained by principal component analysis for  
280 spectra, 40 per species in NIR and colour 
analysis to verify possible differences between 
Eucalyptus and Corymbia solid samples. Data were 
analysed in raw form and after preprocessing 
by the second derivative of Savitzky-Golay 
(polynomial order = 2, smoothing point = 5).

RESULTS AND DISCUSSION

Colorimetry

The colorimetric parameters of Eucalyptus and 
Corymbia species (Table 2) showed differences 
in lightness between most species except C. 
citriodora, E. viminalis and C. maculata which had 
the same tint for white and black colours. For 
the intensity of green–red chromatic coordinate 
there were no significant differences between C. 
citriodora, C. maculata and E. dunnii. Intensity of 

the blue–yellow chromatic coordinate separated 
the species into two distinct groups, i.e. one 
comprising E. dunnii and E. viminalis and other, 
E. microcorys and E. saligna. For the rest of the 
species, C. citriodora was similar to E. dunnii and 
E. viminalis while C. maculata and E. tereticornis are 
both unique, not similar to the rest of the species. 
	 Based on the timber colour chart (Camargos 
& Gonçalez 2001), the species were classified as 
(1) olive yellow—C. citriodora and C. maculata, 
(2) grey–red—E. dunnii, (3) grey rose to olive 
yellow—E. microcorys, (4) brown–red to red—E. 
saligna, (5) dark brown—E. tereticornis and (6) 
rose—E. viminalis. For E. grandis, Gonçalez et 
al. (2006) observed rose–red color and grey 
olive for E. cloeziana and reported differences 
in colour parameters between radial/tangential 
surfaces. Eucalyptus grandis has been reported to 
have lightness = 46.77 and coordinates green–
red = 10.57 and blue–yellow = 14.08 (Amorim 
et al. 2013). They elaborated that the green–red 
chromatic coordinate is mainly responsible for 
red colour and yellow pigmentation.
	 Eucalyptus dunnii was classified in this study 
as grey–red, while Vanclay et al. (2008) classified 
it as pale yellowish and uniformity in colour 
within trees and a small distinction between 
families related to yellowness (b*) of the wood 
was reported. Corymbia citriodora showed an olive 
yellow colour, contrary to Garcia et al. (2014) 
who observed that parameters related to grey–red 
colour and its green–red chromatic coordinate 
had more influence on colour variation between 
species and also in variation of lightness of 
radial/tangential surface. Colorimetry has 
potential to be applied as an auxiliary tool 
for species identification but it must be done 

Table 2	 Mean (standard deviation) values of CIELab parameters of species

Species L* a* b*

Corymbia citriodora 63.16 (6.29) b 7.26 (2.25) c 21.05 (2.02) b 

Corymbia maculata 61.78 (4.43) bc 8.03 (1.22) c 22.91 (3.15) a

Eucalyptus dunnii 74.02 (2.01) a 7.21 (0.44) cd 20.28 (0.88) bc

Eucalyptus microcorys 59.73 (5.35) c 6.38 (0.97) d 18.79 (0.80) c

Eucalyptus saligna 51.25 (2.15) d 16.52 (1.62) a 19.50 (1.40) c

Eucalyptus tereticornis 45.91 (4.46) e 15.25 (1.11) b 16.08 (2.07) d

Eucalyptus viminalis 63.91 (2.53) b 15.83 (0.85) ab 20.60 (1.03) bc

Mean values followed by the same letter in the same column do not differ statistically by the Tukey’s test 
at 95% probability; L* = lightness, a* = green–red chromatic coordinate and b* = blue–yellow chromatic 
coordinate 
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carefully and more studies should be carried out 
(Garcia et al. 2014). Adequate cutting angle and 
the observation of the differences in longitudinal 
and radial position of eucalypt clones are 
recommended for more homogeneity based on 
the final colour desired (Mori et al. 2005). 
	 Colour variation within a species is frequent 
and can be related to genetic and environmental 
characteristics (Bradbury et al. 2011). Significant 
difference in the L*a*b* values between species, 
provenances and sites as well as between young 
trees from plantations and old trees from 
natural stands was described by Gierlinger et al. 
(2004). The authors explained that differences 
in origins and sites are associated with phenolic 
content. The reflectance curves of visible spectra 
showed the same behaviour between species 
(Figure 2). Eucalyptus viminalis, E. saligna and E. 
tereticornis are species classified visually as reddish 
and showed a distinct line compared with the 
rest of the species, with less reflectance in the  
480–580 nm region. 
	 Principal component analysis was able to 
distinguish all species (Figure 3). A single 
principal component explained 99% of the 
variation between analysed materials based on 
data without mathematical treatment, enabling 
species discrimination. Corymbia citriodora and 
E. microcorys presented a tendency to form two 
groups because of differences in samples. From 
visual evaluation, it was clear that first group 

had contrast between sapwood and heartwood 
while the second presented natural variety of 
colour bars. Corymbia maculata and E. dunnii 
also exhibited separation between samples. 
This might be the result of irregular surface or 
differences between radial and tangential section 
in light reflection. However, discrimination of the 
studied species can be done based on reflectance 
curves of visible light. 
	 It is possible to distinguish the distribution of 
Eucalyptus and Corymbia species into two groups 
based on colour (Figure 3), namely, red/rose 
and grey/yellow/brown, and also verify the 
influence of surface orientation when samples 
of one species are more separate in function of 
data position, i.e. radial or tangential section. 
Wavelengths, which represent rose and red 
colour (640–790 nm) and chromatic coordinate 
a*, presented influence on PC2 (loading graphs 
not shown) and are responsible for the division 
in two groups based on colour, even representing 
only 1%. 
	 Colour differences between radial and 
tangential sections can be ascribed to anatomical 
characteristics such as arrangement of cells, 
large rays and spiral grain (Nishino et al. 2000). 
The texture of a wood surface has important 
influence on its colour, and a difference with 
magnitude of 1 to 2 in colour parameters is 
common and accepted (Buchelt & Wagenführ 
2012). Dr ying, thermal modification and 

Figure 2     Reflectance curves in the visible range for five Eucalyptus and two Corymbia species
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natural or biological degradation can cause 
changes in wood colour as a result of chemical 
modification and are examples of processes that 
can be monitored by colorimetry (Torres et al. 
2012, Cademartori et al. 2013, Stangerlin et al. 
2013). The use of colour in distinguishing wood 
species is presented in studies generally based on 
images and with classification methods such as 
artificial neural networks (Bombardier & Schmitt 
2010, Peng 2013). The use of CIELab values for 
distinction of tree species based on leaves were 
reported by Richardson et al. (2003) and Nisgoski 
et al. (2015a) and with wood samples of Eucalyptus 
spp. by Garcia et al. (2014), which verified the 
potential of this technique. 

Near-Infrared spectroscopy

The NIR spectra of the species were similar 
(Figure 4). As found for chemical and anatomical 
characteristics of species, NIR absorbance values 
can show variation and for discrimination, 
some spectral regions can have more influence 
(Pastore et al. 2011, Durgante et al. 2013, 
Nisgoski et al. 2016) than the rest. To eliminate 
noise and remove additive and multiplicative 
effects in the spectra and also improve analysis, 
the second derivative was applied (Figure 5). 
Second derivative preprocessing has already 
been applied in other studies of foliage and wood 

species discrimination (Sandak et al. 2011, Meder 
et al. 2014, Zhang et al. 2014). The informative 
wavelength was related to peaks in the spectra 
based on interaction of the infrared radiation with 
the cell compounds (Figure 4). Corymbia citriodora 
had more intense peaks in all spectra and E. dunnii 
and E. saligna presented less variation in NIR 
absorbance. Some differences between species 
were observed in regions related to cellulose, 
hemicelluloses and lignin which depended on 
cell wall composition and extractives, and also can 
influence species discrimination. 
	 The spectral region between 1445 and  
1450 nm and near 2134 nm presented bands 
related to lignin and extractives content. The 
region from 1470 to 1490 nm was principally 
assigned to cellulose and hemicelluloses. Bands 
at 2267 nm are related to lignin while at 2270 nm,  
the bands can be assigned to cellulose components. 
Between 1800 and 1900 nm, it was possible to 
verify greater distinction of absorbance intensity 
of peaks between species. This region is related 
to all cell wall components, while bands between 
1916 and 1942 nm are associated with OH from 
water (Schwanninger et al. 2011). 
	 Principal component analysis was carried out 
to verify the distribution of wood samples with 
the second derivative of Savitzy-Golay (Figure 
6). The first principal component explained 
87% of variation between the analysed materials, 

Figure 3 	 Score plot from principal component analysis with visible light data of five Eucalyptus and two 
Corymbia species
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Figure 4     Mean near-infrared spectra from five Eucalyptus and two Corymbia species

Figure 5     Mean second derivative near-infrared spectra from five Eucalyptus and two Corymbia species 
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enabling species discrimination. We expected 
some groups related to colour to be formed but 
this was not observed. One group was formed 
comprising C. maculata and E. microcorys, another 
E. dunnii, E. saligna and E. viminalis, and a 
third group was formed of C. citriodora and E. 
tereticornis.
	 Groups based on NIR spectra can be the result 
of chemical composition and also be influenced 
by genetics, age, forest conditions, adaptations 
and natural hybridisation. Some characteristics 
from phylogeny can explain why E. dunnii 
and E. viminalis presented similarity in data 
position in PCA graphic. Both are from subgenus 
Symphyomyrtus, section Maidenaria. In contrast, 
E. saligna is from the same subgenus but from 
section Latoangulatae and E. tereticornis belongs 
to Exsertia. On the other hand, results from NIR 
analysis that group C. maculata and E. microcorys 
are not influenced by these characteristics 
because the latter is phylogenetically classified 
in subgenus Blakella and section Maculatae, while 
E. microcorys is from subgenus Alveolata (Steane 
et al. 2011, Bayly et al. 2013). Wood density of 
the species also had an influence on spectra. 
The groups observed in Figure 6 are: (1) 690– 
750 kg m-3 for E. dunii, E. saligna and E. viminalis, 
(2) 770–810 kg m-3 for C. maculata and E. 

microcorys and (3) 950–980 kg m-3 for C. citriodora 
and E. tereticornis (Ballarin et al. 2015). 

CONCLUSIONS

Visible and NIR spectroscopy can be successfully 
applied to separate eucalypt species. In the 
visible spectroscopic analyses, lightness and 
intensity of green–red chromatic coordinate 
presented differences between most of the 
species, while intensity of the blue–yellow 
chromatic coordinate was similar for E. dunnii 
and E. viminalis, and for E. microcorys and E. 
saligna. Principal component analysis was able 
to distinguish all species. Just one principal 
component explained 99% of the variation of 
the analysed materials. It was possible to separate 
the wood samples into two colour groups, i.e. 
red/rose and grey/yellow/brown.
	 The NIR spectra were similar for the species. 
In the principal component analysis, the first 
component explained 87% of the variation 
between the species and it was possible to 
discriminate them. Three groups associated with 
the density of the species were formed, i.e. (1) 
Corymbia maculata and Eucalyptus microcorys, (2) 
E. dunnii, E. saligna and E. viminalis and (3) C. 
citriodora and E. tereticornis. 

Figure 6	 Score plot from principal component analysis with second derivative of near-infrared data of five 
Eucalyptus and two Corymbia species
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