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To avoid the problem of destructive tree sampling, we tested an indirect estimation procedure whereby aboveground 
tree volumes are estimated using affine-transforms of traditional bole volume equations. The study compared the 
predictive performance of the (1) proposed procedure, (2) allometric aboveground volume equations, and (3) 
simple upscaling of empirical tree bole volumes (serving as benchmark procedure). The study assessed species- 
and tree-individual random deviations from mean procedure effect on prediction errors. Six volume equations 
were each fitted to aboveground volume (a- version) and bole volume (b- version); predictions of latter volumes 
were affine-transformed to estimate aboveground tree volumes. Bole height, total height and diameter at breast 
height (dbh) were measured for 59 trees from 10 species in eastern Cameroon. The Schumacher and Hall equation 
ranked first in quality-of-fit. The direct and indirect approaches applied with this volume equation predicted the 
aboveground tree volumes equally well across all species (groupings), with bias (± RMSE of 0.153 ± 2.512 and 0.178 
± 2.56 m3 respectively. Finally, trees within species accounted for 49.3% of the total variability in volume prediction 
error vs only 3.5% for species. Recommendations have been made for improvement relatively to data requirements 
and model building. 

Keywords:	 Aboveground volume, affine transform, belowground volume, conjugate models, jackknife estimator,  
predictive performance, volume equation

INTRODUCTION

Tropical rainforests are the world’s most important 
carbon sink for mitigating the impact of carbon 
emission on global climate change (Houghton 
et al. 2009, Marshall et al. 2012). These forests 
are the main focus of the international policy 
to ‘reduce emissions from deforestation and 
degradation’ in developing countries (REDD+) 
(Kuyah et al. 2012, Marshall et al. 2012, Angelsen 
et al. 2013) under which forest carbon stocks 
must be estimated with as much accuracy 
and precision as possible. This requirement 
has rekindled interest in the construction of 
allometric equations for estimating aboveground 
tree biomass (Zianis & Mencuccini 2004, Picard 
et al. 2012a, Kuyah et al. 2012, Ploton et al. 2015).
	 However, ecological and methodological 
constraints have impeded the development of 
allometric equations globally, with a particular 

acuteness in the Congo Basin. Ecologically, the 
contribution of the Congo Basin forests to the 
global carbon cycle is difficult to assess due to 
several sources of uncertainty. These include 
(1) high plant diversity, often exceeding 300
different species ha-1 (Lewis et al. 2004), (2) high
variability in forest types, wood densities, tree
heights, biomass and volume (Feldpausch et al.
2011, Lewis et al. 2013), (3) poor knowledge of
natural stand dynamics such as growth, mortality
and recruitment (Picard et al. 2012b, Mayaka et
al. 2014) and (4) human disturbances (logging
and deforestation) responsible for releasing
greenhouse effect gas (IPCC 2007, Marshall et
al. 2012).

Methodologically, while the development 
of tree biomass equations is embedded in the 
theoretical frame of regression analysis, it suffers 
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from sampling process errors. In effect the data 
used in constructing biomass equations typically 
include small tree diameters (Ketterings et al. 
2001, Ebuy et al. 2011). This is because the 
process is not only destructive as trees must be 
felled, but it is also lengthy and cumbersome as 
trees must be cut into compartments that are 
weighed and sampled for determining their wood 
specific density. However, these comprehensive 
tree measurements have not eliminated the main 
difficulties inherent to regression analysis. Such 
difficulties include the choice and inclusion 
of independent variables in sufficient number 
and appropriate metrics and lack of standard 
models together with the difficulty in model 
selection (Schabenberger & Pierce 2002). 
Inadequate tackling of these issues is likely to 
result in prediction errors, further compounding 
the bias due to high proportion of small trees 
in the samples. The multifactor variability 
in tree size, volume and biomass observed 
between locations is readily handled using linear 
mixed effects models (Pinheiro & Bates 2000,  
Venables & Ripley 2002, Bolker et al. 2008). The 
predictor variables used in multispecies allometric 
equations are, in decreasing order of importance, 
tree stem diameter , woody density, tree height 
and forest type, all of which, wood density aside, 
have traditionally been used to construct volume 
equations (Avery & Burkhart 2002). 
	 How could tree volume (hence biomass and 
carbon stocks) be extrapolated in situations 
where destructive sampling of trees is prohibited? 
Five such situations can be envisaged as follows: 
firstly, protected areas (parks, reserves and 
sanctuaries) do not allow any use forms that may 
conflict with the preservation of the biological 
diversity of tropical rainforest. Secondly, vast 
swathes of forested lands remain inaccessible 
for lack of economic interest, inadequate 
logistics and road infrastructure, or difficult 
terrain such as marshes and mountains. Thirdly, 
only traditional dendrometric measurements 
(diameter and height) may be obtained from 
some individual trees. Fourthly, destructive 
sampling of (mostly small) trees may cause too 
much disruption in the sustainable management 
of forest concessions, especially under reduced-
impact logging schemes (Mayaka et al. 2014). 
Fifthly, the need may occasionally arise to 
estimate the volume or biomass of already logged 
trees for policing or seeking compensation from 
illegal harvesting. 

	 The objectives of this study were to propose 
a statistical approach for extrapolating stem 
volume to total aboveground volume (up to 
group 1 branches with basal diameter ≥ 20 cm) 
when destructive sampling is prohibited and to 
assess which proportion of the total variability 
in volume prediction error is due to species and 
individual trees (within species). 

MATERIALS AND METHODS

Notation and terminology

Throughout this  paper,  volume wil l  be 
considered in relation to five tree compartments, 
namely, stump, butt swell, buttresses (if 
present), log and tree top. Tree top consists 
of the stem part above the main tree bole 
plus branches which have basal diameters 
of 20 cm or larger. The term aboveground 
volume will refer to total volume of the five 
tree compartments. A scaling function refers 
to any transformation that maps bole volume 
to aboveground volume. A particular class 
of scaling function is the affine function 
expressed as φ(x) = φ0 + φ1 × x, where x = 
arbitrary argument and (φ0, φ1) is a pair of real 
numbers. In this work, extrapolation is defined 
as a simple procedure whereby an independent 
tree measurement (D*, H*) together with a 
previously fitted volume equation are used to 
predict the tree bole volume  which is then 
mapped onto tree aboveground volume  a  
using a scaling function, as illustrated in the 
bottom part of Figure 1. 
	 The notations used are as follows:
(1)	D and H are tree diameter (at breast height 

or aboveground buttresses if present) and 
height respectively

(2)	Va and Vb are respectively the aboveground 
and bole volumes 

(3)	G = {gu, u = 1, 2,…6} is a set of six contending 
models for predicting both volume types

(4)	Vau = gu (D, H; αpu) and Vbu = gu (D, H; βpu)
are conjugate models used for predicting 
aboveground volume and bole volume 
respectively; also referred to as α- and  
β-versions of model, gu, where αpu = (α1,…,  
α pu) and βpu = (β1,…, βpu) are pu -dimensional 
vectors of unknown regression parameters 
and pu = the number of dimensions for 
parameter in model u.
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(5)	 -ts, -ts and -ts are the jackknife estimators of 
model parameters, leaving out tree t (t = 1, 
2,…, ns) of species s (s = 1, 2,…, S). 

Study site

The study was conducted in the Kadeï Division, 
east region of Cameroon, within a forest 
concession (3° 53'–3° 56' N, 14° 48'–14° 51' E) 
of 86,096 ha at an elevation range of 600–850 m 
above sea level. The vegetation forms part of 
the semi-deciduous Guinea-Congolese dense 
tropical rainforest with high species richness. 
The wet equatorial climate exhibits an annual 
average temperature of 25 °C, an average annual 
precipitation of 1500 mm (with range ± 100 mm), 
and four seasons (resulting from the influence 
of the monsoon and harmattan), which are a 
long dry season (November–March), a short 
dry season (June–August), a light wet season 

(March–June) and a heavy wet season (August–
November). Ferralsols (ferrallitic red soils) are 
common in the concession, except in flood 
plains and swamps where alluvial and colluvial 
sediments overlay hydromorphic soils.

Study species

The study used 59 sample trees earmarked for 
felling and belonging to 10 different species (see 
details in Table 1). Five species provided at least 
five trees each—ayous (Triplochiton scleroxylon), 
sapelli (Entandrophragma cylindricum), iroko 
(Milicia excelsa), tali (Erythrophleum ivorense), 
and okan (Cylicodiscus gabunensis) and the 
other five species—abam (Chrysophyllum beguei), 
frake (Terminalia superba), ilomba (Pycnanthus 
angolensis), padouk (Pterocarpus soyauxii), and 
lati (Amphimas pterocarpoides) were pooled in a 
remainder group.

Figure 1	 The proposed indirect approach for predicting aboveground tree volumes ( V̂a
E ) in relation 

to the direct approach for predicting aboveground and bole volumes  (V̂a
 and  V̂b

 respectively) 
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Tree measurements

Tree measurements included diameter at breast  
height (dbh, D) measured at 1.30 m above the 
ground or 30 cm above buttresses using diameter 
tape and total height was obtained by adding the 
lengths of the different tree sections: stump, butt 
swell (if present), bole and crown. The following 
approaches were used in computing volumes of 
tree components.
(1)	Length (L) together with the average of two 

perpendicular diameters were recorded at 
lower ( 1) and upper ( u) ends of the stump 
and butt swell. Assuming the stump to be 
cylindrical, its volume was obtained as π × L × 
( 1 + u )2 /4. 

(2)	Bole diameters were measured at 2-m intervals 
and the resulting volume was computed using 
the Smalian formula. Total bole volume was 
obtained as the sum of volumes of individual 
bole sections.

(3)	Volume of a buttress was obtained as 
	 (4 – π)Lb Hb Wb)/12 (Henry et al. 2010), 
	 where Lb, Hb, and Wb, are the length, height 

and width of the buttress respectively.
(4)Branches in the crown were subdivided into 

two groups (Henry et al. 2010) depending 
on whether basal diameter was 20 cm and 
above (group 1) or less than 20 cm (group 
2). The stem portion above the bole and 
the branches in group 1 were measured at 
1-m interval (whenever possible) and their 
volume obtained using the same formula as 
for the stump. 

Statistical techniques

Statistical techniques used were modelling 
assumptions, model fitting and selection 
and predictive performance assessment. All 
computations were performed using version 3.0.2 
of software R (2013). 
	  
Modelling assumptions 

We make the usual assumptions of linear and 
nonlinear regression models:
(1)	Covariates  (dbh and bole height) are free of 

measurement errors.
(2)	Error terms, e , are a Gaussian variables 

identically and independently distributed 
(iid) with mean zero and variance . 

(3)	Regression parameters form a vector of 
unknown constant values to be estimated 
by an optimisation method such as the 
ordinary least squares for linear regression or, 
alternatively, the Gauss–Newton and Newton–
Raphson approaches to least squares in case 
of nonlinear regression (Bates & Watts 1988, 
Schabenberger & Pierce 2002, Venables & 
Ripley 2002).

	 For the purpose at hand, we further assumed 
the following:
(1)	Aboveground volume is an affine function 

of the bole volume, i.e. Va = φ0 + φ1 × Vb + ϵ, 
where ϵ~ iid N(0, σ2). 

(2)	G = {gu, u = 1, 2,…6} is a set of nested models 
that is closed under the affine transformation  
φ, i.e. for all u = 1, 2,…6, gu is nested in some 

Table 1	 Composition of the study sample 

Species Sample size

Ayous (Triplochiton scleroxylon, Malvaceae) 22

Sapelli (Entandrophragma cylindricum, Meliaceae) 9

Iroko (Milicia excelsa, Moraceae) 9

Tali (Erythrophleum ivorense, Caesalpiniaceae) 7

Okan (Cylicodiscus gabunensis, Fabaceae) 5

Remainder1 7

Total2 59

1The remainder group comprised seven trees including three lati (Amphimas ferrugineus, 
Fabaceae) and one tree of each of the following four species: abam (Chrysophyllum beguei, 
Sapotaceae), frake (Terminalia superba, Combretaceae), ilomba (Pycnanthus angolensis, 
Myristicaceae) and padouk (Pterocarpus soyauxii, Fabaceae); 2the actual model fitting used 
one observation less (i.e. ayous tree identified as outlier in Figure 2)
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gu + k with k ≥ 0 and φ(gu) =   is also a member 
of the set G, given some reparameterisation. 

(3)	Fnctions gu (u = 1, 2,…6) are each twice 
differentiable with respect to regression 
parameters. 

Model fitting and selection
 
We compared six of the most widely used volume 
equations in the forestry literature (Clutter et 
al. 1983, Avery & Burkart 2002, Fonweban et al. 
1995, 2012). These equations are functions of 
stem diameter D and height H of the generic 
form gu (D, H; θpu), u = 1, 2,…,6 which are 
displayed in Table 2 together with model 
nesting pattern, typology and image under 
the affine transformation. Three approaches 
lend themselves in predicting the aboveground 
volumes using stem diameter and height. 
	 Approach 1 (benchmark): Using the scaling 
function, in casu the affine regression model 
(AR), the following aboveground volume 
predictions and prediction errors were derived: 
	 		
	   	 (1)
	 		
	    	

(2)	

where subscripts a and b refer aboveground and 
belowground volumes respectively, and subscripts 
t and s index trees and species respectively. 	
	 Alternatively, a mechanistic regression 
model is fitted to aboveground (Va) and bole 
(Vb) volumes, giving a pair of conjugate models, 

henceforth referred to as a- and b-versions of the 
model. More precisely, 
		

	  	 (3)

		
		

where all terms are as previously defined with 
reference to tree t of species s and S = 6, total 
number of species in the study.	
	 Approach 2: This was a direct prediction of 
the aboveground volume using the a-version  of 
model  in equation 3, from which the prediction 
errors were derived as:

	
	        	 (4)

where superscript Mu refers to estimation error 
obtained with model u.
	 Approach 3: This was an indirect prediction of 
the aboveground volume in two steps, using the 
b-version of model  in equation 3 to predict the 
bole volume  which was then expanded into the 
aboveground volume using the scaling function 
in equation 1. The aboveground volumes 
predicted were: 

	

;

;

		
(5)

Table 2 	 Form, number of parameters, nesting pattern, regression type and affine transform of the compared 
multispecies volume equations 

u Form of equation pu Nesting 
model

Regression 
type

Affine transform

0 = 0 0 ≠ 0

1 V1 = θ0 + θ1 D2 2 V5 Linear V1 V1

2 V1 = θ0 + θ1 D2 H 2 V6 Linear V2 V2

3 V3 = θ1 Dθ2  2 V4 Intrinsically linear V3 V5

4 V4 = θ1 Dθ2 Hθ3 3 V6 Intrinsically linear V4 V6

5 V5 = θ0 + θ1 Dθ2 3 V6 Nonlinear V5 V5

6 V6 = θ0 + θ1 Dθ2Hθ3 4 V6 Nonlinear V6 V6

The compared multispecies volume equations are of the generic form Vu = gu (D, H; θpu), where D = dbh (cm), H = bole 
height (m), u = indexing integer (1 ≤ u ≤ 6 )and θpu = vector-valued parameter of dimension pu; also shown for each model 
are the nesting model, regression type and image under the affine transformation (x) = 0 + 1 (x); model 3 is nested in 
both models 4 (under H0: θ3 = 0) and 5 (under H0: θ0 = 0)
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for which the extrapolation errors were as follows: 
	
		
		  (6)
	 ;

where  is some reparameterisation 

induced by the scaling function φ(∙). 
	 The proposed indirect approach is equivalent 
to a first-order Taylor’s approximation (Dudewicz 
& Mishra 1988) for small differences .  
We recommend the systematic upscaling of 
the bole volume predictions when the distance 
between the estimated α- and β- parameter vectors 
is larger than 5% of the length of the estimated 

α-parameter vector, i.e. ≥  as 

further expounded in Appendix 1.
	 We used information criteria (ICs) for model 
selection (Burnham & Anderson 2002), including 
the most widespread Akaike’s information 
criterion, AIC = –2l + 2P, its finite- size correction 

AICc = AIC + 2P(P + 1)
n–P–1

,  and the second most 
common but more conservative Schwarz or 
Bayesian information criterion (BIC) = –2l + P 
× log (n), where l = log-likelihood, n = ∑s ns = 
59 is the sample size, and P = number of model 
parameters (the variance of error terms included, 
i.e. P = pu + 1). Approaches 2 and 3 were applied 
with each of the k(i.e.the number of models that 
pass the selection procedure by AIC criterion) 
selected models (k < 6) giving a total of 2 × k 
factorial combinations which, when combined 
with the benchmark (approach 1), formed an 
augmented factorial design with (2 × k + 1) 
compared procedures. 
 
Predictive performance assessment 

The main purpose of this study was to assess 
whether the aboveground volume extrapolation 
(approach 3) is nearly as good as the allometric 
tree volume equation (approach 2) or even a 
simple upscaling of the empirical bole volume 
(approach 1 or benchmark). Given the small 
sample size of 59 trees, the jackknife or leave-
one-out cross-validation (LOOCV) technique 
was used to assess the predictive performances 
of the (2 × k + 1) contending procedures. 
The LOOCV consists in fitting repeatedly a 
model by leaving out each observation in turn, 
thus providing for the omitted observation a 

prediction that is independent from the training 
data (Stone 1974, Arlot & Celisse 2010). Using 
jackknife prediction errors in which the jackknife 
estimators of model parameters - , -  and -  
are substituted respectively into equations 2, 4, 
and 6, the prediction bias or mean errors (in 
m3) were calculated as follows (all superscripts 
and unnecessary subscripts have been dropped 
for simplicity):  (for species s) and  

 (over all species, where  
is the weight for species s). The precision of 
prediction (also in m3) was measured by the root 
mean square errors for species s 

and  over all species. 

	 In keeping with our second purpose (which 
was to assess which proportion of the total 
variability in volume prediction error was due 
to species and individual trees within species) 
stated in the introduction, we estimated the 
variance components of species and trees within 
species on the prediction errors. The prediction 
procedures enter the following ANOVA model as 
levels of a fixed-effect factor (Pinheiro & Bates 
2000):

	 dpts = μ + τp + rs + rts + εpts	 (7)

where the response variable dpts = prediction 
error obtained with procedure p (p = 1, 2,…., 2∙k 
+ 1) on tree t (t = 1, 2,…,ns ) of species s (s = 1, 
2,…, S), μ = overall average prediction error, τp 
= fixed effect of procedure on prediction error, 

 = species–individual random 
deviations from the mean prediction error μ, 

t  = random deviations of individual 
trees (nested in species) from mean effect of 
procedure p and  = random 
residual errors. Again, for sake of simplicity, 
the augmented factorial design structure is not 
shown in the above ANOVA model equation 
(see Schaarschmidt and Vaas (2009) for detailed 
statistical analysis guidelines). Finally, the 
algorithm of the proposed prediction approach 
is detailed in Appendix 2. 

RESULTS

The summar y statistics of tree diameter 
and heights (Appendix 3) and the bole-to-
aboveground volume ratios (Appendix 4) are 
shown for contextualisation. Ayous was the 
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largest species in the data set and it exhibited 
the widest range of variation in terms of dbh  
(  = 1.27 ± 0.30 m) and total height (  = 49.3 ± 
3.0 m). By contrast, tali had the smallest tree sizes  
(  = 0.95 ± 0.16 m and  43.6 ± 6.2 m). The 
species in the remainder group had dbh of 1.05 ± 
0.08 m and height 47.1 ± 3.8 m. The estimated 
ratios of bole volume-to-aboveground volume 
(i.e. up to group branches of basal diameter ≥ 
20 cm) ranged from 0.81 (ayous) to 0.90 (iroko) 
and did not differ significantly from 0.84 for 
all species (groupings) according to the 95% 
percentile confidence interval. 
 
Model fits and assessment

The bivariate and marginal distributions of both 
volume types are shown in Figure 2, which clearly 
indicates an outlier: an ayous tree. By discarding 
the outlier, the relation between aboveground 
and bole volumes became linear and strong. 
The fitted line overlaid on the scatter plot had 
coefficients (with standard errors)  = –2.255 

± 0.894 (p < 0.05) and  = 1.336 ± 0.052 (p < 
0.001, and a coefficient of determination r2 = 
0.92. Table 3 shows the fit of a- and b-versions for 
all six contending models, including parameter 
estimates and information criteria. Models 4 
and 3 ranked respectively first and second. The 
distance between estimates of a- and b-parameter 
vectors relative to the length of a-parameter 
vector for both selected models was twice the 
5% threshold (10.7 and 10.1% for models 4 and 
3 respectively), thus requiring an adjustment of 
bole volume predictions. 

Predictive performance assessment
 
The mean prediction errors (with root mean 
square errors in parentheses) for the compared 
procedures are presented in Table 4. The 
benchmark procedure underestimated the 
aboveground volume for all species, except 
for ayous and tali. The predictions based on 
model 3 whether adjusted (b-version) or not 
(a -version) were the least precise and least 

Figure 2 	 Bivariate and marginal distributions of bole volume (Vb) and aboveground volume (Va) the obvious 
outlier among ayous trees was omitted from model fitting
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accurate but differed only slightly between them. 
By comparison, the predictions obtained with 
model 4, also known as Schumacher and Hall 
volume equation (Schumacher & Hall 1933), 
were more accurate and precise compared 
with the other procedures (Figure 3). Direct 
and indirect approaches based on this model 
predicted the aboveground tree volume equally 
well across all species (groupings), giving 0.153 
± 2.512 and 0.178 ± 2.560 m3 (bias ± RMSE) 
respectively.  However, both procedures poorly 
predicted the aboveground volumes of ayous 
trees (RMSE = 3.093 and 3.223 m3 respectively 
for direct and indirect procedures). 
	 Larger variability of prediction errors was 
obser ved among trees within species than 

between species (Figure 3). Variance component 
estimates were as follows  = 0.3316,  = 4.6412 
and  = 4.4480 adding up to 9.4208. Hence, trees 
within species accounted for 49.3% of the total 
variation as against 3.5% for species.
	
DISCUSSION

Model output, selection and predictive 
performance 

This study included aboveground volumes up 
to group 1 branches, i.e. branches with basal 
diameter ≥ 20 cm. The proposed approach relied 
on the assumed linear relationship between 
aboveground and bole volumes, i.e. Va = φ0 + 

Table 3	 Model fits (including estimated parameters with standard errors in parentheses) and assessment 
based on quality-of-fit (using information criteria AIC, AICc and BIC for initial ranking) together 
with predictive performance (using mean errors and root mean square errors of prediction for 
final ranking)

Model Parameter estimate1 Information criteria2 Rank

Version Index(u)              0         1        3     4 AIC AICc BIC

a 1 0.26
(1.34)

14.24***
(0.94)

- - 318.2 312.7 324.4 5

2 0.94
(0.80)

0.52***
(0.02)

- - 267.9 262.3 274.0 3

3 2.64***
(0.03)

2.07***
(0.16)

- - -14.5 -20.0 -8.3 2

4 0.09
(0.26)

1.92***
(0.10)

0.79***
(0.08)

- -71.3 -78.6 -63.1 1

5 -0.83
(6.83)

15.3*
(6.64)

1.90**
(0.56)

- 320.2 312.9 328.4 6

6 1.41
(2.80)

 0.73
(0.56)

2.09***
(0.28)

0.88***
(0.18)

269.2 260.4 279.5 4

b 1 2.99**
(1.11)

9.84***
(0.77)

- - 295.8 290.2 301.9 6

2 3.37***
(0.75)

0.36***
(0.02)

- - 260.8 255.2 266.9 3

3 2.50***
(0.03)

1.87***
(0.16)

- - -12.1 -17.6 -5.9 2

	
4 0.10

(0.30)
1.73***

(0.11)
0.74***

(0.09)
-55.1 -62.2 -46.9 1

5 -14.16
(19.95)

26.86
(19.90)

0.94
(0.58)

- 294.9 287.6 303.1 5

6 -3.85
(5.37)

2.79
(2.50)

1.35***
(0.33)

0.55**
(0.18)

260.2 251.4 270.5 4

1The parameter estimates for models 3 and 4 are those of the fitted log-linear regression; 2the model selection used 
preferably the finite-size correction of the Akaike’s information criterion (AICc) and the Bayesian information criterion 
(BIC) as the sample size of the training set (n = 58, after one outlier was omitted) relative to the number of parameters 
(3 ≤ P ≤ 5) is less than 40 (see text for details); *, **, *** = significant at probability levels of 5, 1 and 0.1% respectively
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Figure 3 	 Box plot of the distribution of prediction errors by species (groupings) conditional on prediction 
procedures; prediction procedures are factorial combinations of adjusted (adj) and unadjusted 
(unadj) models (mod) 3 and 4; species names are abbreviated as follows: Ayo = ayous, Iro = iroko, 
Rem = remainder group (including lati, abam, frake, ilomba and padouk), Sap = sapelli, Tal = tali

Table 4 	 Mean bias (in m3, with root mean square errors in parentheses) of three prediction approaches of 
tree aboveground volumes 

Approach1 Procedure Species2 Overall

Model Adjustment Ayous Sapelli Iroko Tali Okan Rem3

Benchmark AR No 0.706 
(3.592)

-0.214 
(1.231)

-1.232
(2.003)

0.668
(1.587)

-1.023 
(1.212)

-0.057 
(1.638)

-0.192 
(2.507)

Direct M4, a No 0.156 
(3.093)

0.066 
(2.413)

-0.192 
(1.803)

0.044 
(2.525)

-0.508 
(0.886)

1.334 
(2.231)

0.150 
(2.512)

M3, a No 1.536 
(4.00)

-0.600 
(4.954)

0.895 
(2.356)

-3.315 
(4.228)

-2.410 
(3.510)

2.372 
(3.656)

-0.253 
(3.911)

Indirect M4, b Yes 0.044 
(3.223)

0.050 
(2.342)

-0.301 
(1.777)

0.540 
(2.652)

-0.50 
(0.855)

1.237 
(2.111)

0.178 
(2.560)

M3, b Yes 1.524 
(4.075)

-0.592 
(4.808)

 0.861 
(2.312)

-3.193 
(4.181)

-2.502 
(3.594)

2.361 
(3.650)

-0.257 
(3.906)

1The compared approaches form an augmented factorial design of five procedures including a- and b-versions of models 3 
and 4 (M3 and M4) plus the benchmark affine regression (AR)-based approach serving to upscale bole volume predictions 
from b-versions of models, the bottom two lines correspond to the proposed indirect approach; 2see Table 1 for scientific 
names and sample sizes; 3Rem = group of remainder species (see Table 1 for composition) 
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φ1 × Vb as verified with the dataset in this study 
(Figure 2). Empirically, the linear relationship 
would seem reasonable when the bole-to-
aboveground volume was around 0.84 as in this 
study (but see Ploton et al. 2015 and further 
below). Theoretically the linearity assumption 
is not only useful but also realistic as it probably 
holds independently of the structural and 
morphological characteristics of trees (Bentley et 
al. 2013). Indeed, this seemed to be the case since 
from a simple dimension analysis, the volume of 
a tree is V∝D2 H of which the bole volume is an 
approximation. On the other hand, V∝DdHh  
(2 < d + h < 3) from fractal geometry analysis 
since it is acknowledged that a positive number 
between 2 and 3 estimated tree crown dimension 
better and it is also assumed that the “overall 
shape of a tree (stem and crown) may posses [sic]
similar fractal dimension” (Zianis & Mencuccini 
2004). 
	 Linear relationship above provided a 
benchmark to assess other approaches for 
predicting aboveground volume. For null 
intercept , the prediction approach is equivalent 
to ratio estimation, namely  =  × Vb (Mayaka et 
al. 2014). This simpler more intuitive rule consists 
of using slope of regression through the origin 
for expanding bole volume into aboveground 
volume. Alternatively, the scaling function may 
be a power function, namely,  with the 
value of φ1 (1 ≤ φ1 < 2) depending on the sum  
d + h of the exponents of tree diameter and 
height referred to above. The proposed approach 
still applies when scaling function and allometric 
equations are power functions, provided the 
logarithm metrics is used. Indeed, taking 
model 4 (which reduced to model 3 for 3 = 0), 
bole volumes  would be mapped 

onto aboveground volumes  or, 

equivalently,   
with the following adjusted b -parameters 

,  = 1 b2 and  = 1 b3. 
	 The outcome of model selection and 
ranking was clear-cut, with models 4 and 3 
ranking respectively first and second, well above 
the others, by the three information criteria 
AIC, AICc, and BIC. The final model ranking 
obtained with cross-validation did not differ 
from that obtained initially with information 
criteria. The advantage of cross-validation over 
information criteria is its quasi-universality: cross-
validation generally yields good model selection 

performances provided data are identically and 
independently distributed (Arlot & Celisse 2010). 
However, this comparative advantage comes at 
higher computational cost and lesser accuracy in 
selection frameworks where penalised criteria (of 
which information criteria form a special class) 
has been designed to be optimal, such as least-
squares regression (Arlot & Celisse 2010). 
	 Further reduction in the number of selected 
models prescribed in step 5 of the algorithm 
(Appendix 2) was neither necessary nor possible 
on practical and procedural grounds. From 
a practical standpoint, only two models were 
selected on the first selection round out of six 
(which was a small number to begin with). From 
a procedural perspective, the images of models 
3 and 4 under the affine transformation (i.e. 
models 5 and 6 respectively) did not pass the first 
selection round.
	 The performance of model 4 corroborates 
previous results obtained with Eucalyptus saligna 
stands in Cameroon and Kenya (Shiver & Brister 
1990, Fonweban et al. 1995) and further accounts 
for the widespread and successful application 
that model, i.e. Schumacher and Hall equation, 
has enjoyed in forestry (Bailey 1994, Fonweban 
et al. 1995, 2012). In contrast, despite its good 
reputation, equation 2, usually referred to as 
the combined variable equation (Spurr 1952), 
performed poorly on both fit quality and 
predictive performance. This result confirmed 
earlier arguments that inclusion of tree height 
and crown area improved accuracy of allometric 
equations that were based on tree stem diameter 
alone (Ketterings et al. 2001). 
	 Species contributed less to the variability in 
prediction errors than did trees within species, 
implying that mixed-effects modelling techniques 
should be an integral part of the proposed 
prediction procedure. Direct and indirect 
predictions of aboveground volumes obtained 
across species using the Schumacher and Hall’s 
equation were equally precise. The indirect 
approach was slightly more biased by 0.025 m3 
or 16.3% compared with the direct approach, 
a discrepancy that was inconsequential in light 
of potential ecological gains. Finally, all three 
approaches (benchmark, a-model and b-model) 
readily apply to estimation of carbon stock, since 
tree biomass equations are identical to volume 
equations up to approximately a constant which 
is either multiplicative or additive depending 
on the metrics used. In the case of logarithm 
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metrics, various aboveground biomass equations 
analogous of our models 3 and 4 can be seen 
elsewhere (Kuyah et al. 2012). The results of this 
study cannot, however, be extended to the whole 
crown (i.e. beyond group 2 branches with basal 
diameter < 20 cm) nor generally to larger trees 
in which crown mass represent 50% or more of 
the total tree biomass (Ploton et al. 2015). 

Perspectives and recommendations
 
We examined ways to improve our proposed 
prediction procedure with respect to data 
requirements and model fitting as well as 
validation. 

Data requirements

The poor predictive performance we recorded 
on species with smallest sample sizes (i.e. 
species in the remainder group) suggested that 
sufficient number of trees should be sampled 
on a small number of species rather than the 
reverse. Ayous was the study species with the 
largest sample size (n = 22) and also the largest 
trees. Thus, we recommend sampling two dozen 
trees per reference species over the variation 
range of the two key dendrometric variables 
(dbh and total height). Furthermore, allocation 
of the sample size should be representative of 
the typical frequency distribution of tree size as 
measured by diameter, or perhaps even better, 
the height-to-diameter ratio for the species 
concerned. In other words the shape of the 
histogram should reflect that of the theoretical 
frequency distribution of tree size which, in the 
case of diameter, is typically either bell-shaped 
(ayous, sapelli, and tali) or reversed-J (padouk 
and ilomba) (Durrieu de Madron & Forni 
1997, Picard et al. 2012b). Alternatively, when 
grouping is done by architecture or morphology 
types, sampling should be representative of 
the frequency distribution of tree size for the 
grouping factor. The predictive performance 
of pantropical allometric equations can be 
further improved through the use of habitat 
(location) covariables. The latter may comprise 
soil characteristics (depth, texture, C:N ratio, 
pH and sum of base cations; Marshall et al. 
2012, Lewis et al. 2013) and climate (rainfall and 
temperature; Lewis et al. 2013). 
	 The suggestion to increase sample sizes 
(and number of sites as indicated below) may 
conflict with our stated objective to limit the 

destructive sampling of trees. However, the 
contradiction is only apparent, as an optimal 
estimation procedure will contribute in keeping 
such destruction within acceptable bounds while 
meeting statistical thresholds (power, bias and 
precision) acceptable to all parties. 

Modelling techniques

We examined three specific issues in connection 
to small sample sizes and multifactor variability. 
Firstly, since allometric equations will continue 
to use a relatively limited number of trees 
per species and other classificatory factors, 
bootstrapping can be useful in calculating the 
precision of estimated model parameters (Efron 
& Tibshiriani 1993). Secondly, variability of tree 
volume and biomass is due to various ecological, 
environmental and human factors (Marshall 
et al. 2012, Lewis et al. 2013). Accordingly, the 
construction of allometic equations should 
include sites and trees nested in species as 
random effect factors. Alternatively, trees may 
be grouped by any other meaningful factors such 
as architectural, morphological or functional 
types. On the other hand, using models with 
appropriate error covariance structure improves 
statistical inference through deflated residual 
variance, better precision and increased power of 
tests, provided the survey design and underlying 
biological mechanisms are heeded (Davidian & 
Giltinan 1995, Pinheiro & Bates 2000). Thirdly, 
the main effects and interaction of habitat (i.e. 
location) covariables mentioned earlier and 
noted hereafter (X1,…XK ) are readily included 
in the mean response of allometric equations. 
This inclusion is, however, contingent on the 
form of the volume equation considered: 
(1)	For models 1,2, 5 and 6, by simply replacing 

0, the intercept or linear parameter as the 
case may be, with γ (X1,…XK ) = γ0 + ∑k γk 
Xk + ∑k ≥ h ∑h γkh Xh Xk, where γ0 = intercept 
(overall mean effect), γk = main effect of XK 
and γkh = interaction between XK and Xh.

(2)	For models 3 and 4, replace the linear 
parameter 1 with eγ (X1,…XK), where γ (X1,…
XK) is as just described. 

	 Formally, including habitat covariates in 
model 4 leads to the volume equation 

 
lnVlstk = (γ0 + rl + rs + rts )+ ∑k γk Xk + 

∑k ≥ h ∑h γkh Xh Xk + θ2 lnD + θ3 lnH   	 (8)
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where all terms are as previously defined, rl, rs 
and rts are random deviations from intercept γ0 
respectively for individual location l, individual 
species s and individual trees t nested within 
species s (alternatively trees may be grouped 
by morphology types). The bole volume 
predictions obtained with the b-version of the 
model in equation 8 would then be adjusted 
to obtain aboveground volume by (1) using a 
scaling function as already indicated and (2) 
incorporating the best linear unbiased predictors 
of the random variables rl and rs which are 
significantly different from zero. In case tree 
biomass is the focus, the proposed prediction 
procedure readily applies as indicated earlier. 
	 The cross-validation performed in this 
study is but one of the validation procedures 
available to modellers for testing the predictive 
performance of their models (Stone 1974, Arlot 
& Celisse 2010). The preliminary model ranking 
and selection based on information criteria is 
optimal and should be used preferably over 
cross-validation for the purpose of weeding 
up and cutting down computational costs, 
especially when comparing a large number of 
models. However, the predictive performance 
of models with subsequent independent data 
should use bias and RMSE as criteria. In cases 
where destructive sampling is either banned 
or impractical as premised in this study, actual 
volume should be obtained by alternative means 
such as LiDAR-t (Dassot et al. 2011, Kaasalainen 
et al. 2014, Hosoi et al. 2013a, b).

CONCLUSIONS 

This study proposed an indirect approach 
for extrapolating aboveground tree volume 
using affine transformation of bole volume 
predictions, in an attempt to avoid the destructive 
sampling of trees when building multispecies 
allometric equations. The proposed approach 
was equivalent to the direct allometric equations 
in estimating aboveground volume across 
species (groupings), in terms of prediction bias 
and accuracy obtained with the Schumacher 
and Hall equation. The use of linear mixed-
effects models revealed that trees within species 
contributed the greatest variability to volume 
prediction errors. The proposed approach 
readily applies to the prediction of aboveground 
tree biomass (and hence carbon stock) through 
the inclusion of wood density as constant, 

whether in a multiplicative or additive manner. 
It is suggested that multi-species and multi-
location models incorporate habitat covariates to 
account for the variability of tree volume that is 
related to ecological and environmental factors. 
Together with other non-destructive methods, the 
proposed approach complements current efforts 
in building multispecies allometric equations, 
especially in situations where trees cannot be 
felled due to multiple constraints (imposed by 
conservation and management options as well as 
limited logistics and field inaccessibility). 
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Appendix    1 

Analytical and geometrical features of the proposed approach 

This appendix further examines a number of analytical and geometrical issues inherent to the 
proposed approach for extrapolating tree aboveground volume. To begin with, since G  the set of 
compared models is closed under the affine transformation , both gu and its image  belong to G. 

Next, the jackknifed prediction errors  are approximated by the 

first-order Taylor’s series expansion of (∙) = (gu(∙)) namely,  to the extent 

that the differences are sufficiently small, or equivalently, if in the Euclidian 

space of dimension , the vectors  and a are close. This condition implies that is also close 
to , by virtue of the least squares estimation method. Now, the image of an arbitrary argument x 
under the affine transformation  is either 1∙x or 0 + 1∙x, according as the null hypothesis H0: 0 
= 0 is is rejected at 5% probability level or less. In either case, the affine transformation induces an 
adjustment of the estimated parameter vector such that . By way of illustration, the adjusted 
bole volume prediction under growth model 4 is , which upon expansion yields 

 +  . An interesting special case is the identity function  ≡ I, where the 
image of an argument is the argument itself, i.e. (x) = x, meaning that the estimated parameter 
need not be scaled up. This may be the case only if, for all practical purpose, the distance (a,b) 
between  and  is very negligible compared to the distance (a,0) between 0 and , say (a,b)/

(a,0) < 5%. The empirical distances are obtained for tree t(t=1,2,…,ns) of species s(s=1,2,…,S) 
respectively as –ts (a,b) =  and  using the jackknife technique. The ratio 
of average distances must therefore be less than the threshold value, in casu , 

where , and  (a, 0) is computed analogously. 

Appendix    2

Algorithm for implementing the proposed approach

The algorithm for implementing the proposed prediction approach is as follows. 

Step 1:	 Fit a- and b-models to the complete data set, omitting possible outliers and influential 
observations;

Step 2:	 Rank and select the a- and b-models separately, based on information criteria, AIC, AICc 
and BIC;

Step 3: 	 Obtain the jackknife prediction errors for the 2 × k + 1 prediction procedures and compute 
the precision and accuracy for each procedure;  

Step 4: 	 Use the prediction accuracy (or bias, B) and precision (RMSE) obtained in step 3 to update 
the model ranking in step 2; 

Step 5: 	 Further downsize the set of previously selected models using the following rule: from the 
initial subset of selected b-models obtained in step 2, take model gu such that  = (gu), so 
far as   had passed at least the first round of selection for a-models (based on information 
criteria, ICs); alternatively, from the initial subset of selected a-models take model  such 
that gu = 

–1 ( ), so far as gu has passed at least the first round of selection for b-models 
(based on information criteria, ICs). 



Journal of Tropical Forest Science 29(3): 282–296 (2017)	 Mayaka TB et al.

296© Forest Research Institute Malaysia

Appendix    4

Bootstrap estimates of bole to aboveground volume ratio

Ratio of bole volume to aggregate volume for the whole data are given by species (groupings) and 
for all species combined

Species n  (bole to aboveground volume ratio)1

Estimate Bias2 Var   MSE3 95% CI4

Ayous 22  0.81  3.25 4.71 4.71 (0.76, 0.85)

Sapelli  9  0.84  9.50 3.19 3.20 (0.80, 0.87)

Iroko  9  0.90  -4.42 0.90 0.91 (0.88, 0.92)

Tali  7  0.87 -33.93 6.61 6.72 (0.82, 0.92)

Okan  5  0.89  3.82 3.43 3.43 (0.86, 0.93)

Remainder  7  0.85  5.84 7.92 7.92 (0.79, 0.90)

1Overall ratio estimate was obtained using a thousand bootstrap resamples stratified by species; 2: average of the ratio 
statistic of 1,000 bootstrap replicates minus the estimate of that ratio statistic in the data; 3; 4limits of the 95% confidence 
interval (CI) are respectively the 25th and 975th ordered values of the 1000 resample estimates of the ratio statistic of interest 
(Efron & Tibshiriani 1993).

Appendix     3

Summary of tree measurement data 

Species Dbh Hb 	 Ht

n Range  ± SD Range  ± SD Range  ± SD

Ayous 22 0.88–2.12 1.27 ± 0.30 20.6–37.1 29.3 ± 3.8 45.3–57.3 49.3 ± 3.0

Sapelli  9 1.00–1.78 1.21 ± 0.23 18.3–32.3 26.2 ± 4.4 42.5–52.7 48.5 ± 3.8

Iroko  9 0.94–1.26 1.07 ± 0.10 25.6–29.6 27.9 ± 1.2 45.6–55.6 49.6 ± 2.8

Tali  7 0.68–1.13 0.95 ± 0.16 13.8–20.8 17.5 ± 2.7 32.6–51.6 43.6 ± 6.2

Okan  5 1.03–1.36 1.16 ± 0.13 17.6–27.5 23.4 ± 3.9 45.9–49.6 48.4 ± 1.5

Remainder1  7 0.95–1.15 1.05 ± 0.08 24.7–33.1 28.0 ± 3.2 42.9–53.2 47.1 ± 3.8

The following are included for each species: sample size (n), in addition to variation range and  ± SD of diameter at breast 
height (Dbh, m), bole height (Hb, m), bole volume (Vb, m3) and total volume (Vt, m3); 1the remainder group comprises 
seven trees (three lati and one tree of each of abam, frake, ilomba and padouk) 


