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INTRODUCTION 

A major species in the Indonesian timber estate 
is Acacia mangium (Yamashita et al. 2008, Leksono 
et al. 2008, Rokeya et al. 2010, Tarigan et al. 2011) 
which is mainly used for pulp, paper and other 
wood products (Beadle et al. 2007, Kim et al. 
2009, Le Roux et al. 2009, Yong et al. 2011, Asmah 
et al. 2013). Principal characteristics of wood 
fibre that influence the yield and paper quality 
are length, wall thickness, chemical composition 
and microfibril angle (MFA) (Yahya et al. 2010,  
Pirralho et al. 2014).
	 Acacia mangium’s vessels occupy 12.1% of the 
whole wood (Yahya et al. 2010). Fibre length is 
affected by the vessel transverse enlargement 
during differentiation, following derivation 
from fusiform initial cells (Yahya et al. 2011). 
A 3D dataset of A. mangium can be used to give 
approximate distribution of the length and 
wall thickness of fibres, in relation to distance 
from vessels. The fifth and second fibres from 
the vessel, in radial (RD) and tangential (TD) 
directions, are substantially shorter than farther 
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ones. The relationship of fibre length  and radial 
vessel distance (r = 0.83) is inversely proportional 
up to the fifth fibre, and then steady (Yahya et al. 
2011). Furthermore, similar patterns of variation 
of wall thickness and fibre length are acquired up 
to fifth and second fibre from the vessel in RD 
and TD (Yahya et al. 2015).
	 There were no previous studies reported on 
the chemical composition and MFA as a function 
of distance from vessel. This is due to the difficulty 
in gaining information on the approximation of 
length and wall thickness, due to cell damage 
that is caused by maceration technique. The 
development of fourier transform infrared 
(FTIR) microscopy, with its non-destructive and 
rapid technique that surpasses conventional 
techniques, enabled studies on wood and 
other lignocellulosics’ surface characterisation, 
as well as lignin and carbohydrate content 
evaluation. The conventional method is laborious  
and destructive to natural polymer (Pandey 
1999).
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	 The application of FTIR spectroscopy 
technique provides qualitative results. The 
spectroscopic data, together with multivariate 
analysis, facilitate the screening of inferior 
samples from large datasets and associated 
factor analysis, used to analyse wood samples. 
The utilisation of microscopy and spectroscopy 
techniques, concurrently, facilitate the assessment 
of regions of a sample as small as 50 µm ×  
50 µm (Chen et al. 2010). Microfibril orientation 
using brightfield microscopy is pictured by 
employing iodine precipitation technique, i.e. 
by precipitating iodine crystals within the cell 
wall (Donaldson 2008, Ansell 2011, Ishiguri et al. 
2012). The objective of the study was to investigate 
the chemical compositions and MFA of fibres, 
adjacent to and distant from the vessel  using FTIR 
microscopy and iodine precipitation technique.

MATERIALS AND METHODS 

A wood block of 10 × 7 × 7 mm (in radial, 
tangential and longitudinal directions)(R × T × 
L) was sliced into 5 µm and 20 µm in thickness 
in a radial-longitudinal direction, as samples for 
chemical composition and MFA analysis. The 
distance of fibres from the vessel was used as the 
parameter to classify the fibres into two groups 
based on a previous report, i.e. fibres adjacent 
to vessel and fibres distant from vessel (Yahya et 
al. 2011). The first group compromises of fibres 
located at a distance of up to the fifth and second 
cell from the vessels in RD and TD directions, 
respectively, while the second group are fibres 
located further away from the vessels (Figure 1). 

	 For chemical composition analysis, FTIR 
spectral measurement was carried out using a 
spectrometer, with an auto image microscope 
accessory equipped with a low-noise detector 
(HgCdTe). The samples were set in a sample 
holder and spectra was recorded with a spectral 
resolution of 4 cm-1 and acquisition of 128 scans in 
a transmission mode. Spectra for fibres, adjacent 
to and distant from vessels, were obtained from 10 
and 8 regions of interest (ROI), 75 µm × 75 µm, 
respectively. The Savitzky-Golay algorithm was 
used to transfer the original spectra to the second 
derivative spectra, followed by multivariate 
analysis (Serafińczuk et al. 2011). Since precise 
characterisation of the wood spectral data is not 
easy to accomplish due to overlapping bands of 
hemicelluloses, cellulose and lignin, the spectra 
was processed with principal component analysis 
(PCA) to improve interpretation of the spectral 
data (Al-Qadiri et al. 2008, Chen et al. 2010, Lee 
et al. 2010). The commercially available software 
(Unscrambler® v.9.8, CAMO Software, Inc. 
Woodbridge, New Jersey) was used to complete 
the PCA. 
	 For MFA analysis of fibres, Schultze mixture 
with 6 g of KCIO3 and 100 mL of 35% HNO3 was 
made. The sample sections were then soaked in 
a solution of H2O:Schultzes mixture, 2:1, for 3 
days, followed by direct staining on the glass slide 
and blotting with 3% iodine-potassium iodide 
for 3–5 seconds. Filter paper was used to remove 
the excess solution. Two drops of ice cooled 60% 
HNO3 were put on the section under ventilation, 
mounted by a cover slip. The picture of MFA 
of S2 layers was then immediately taken using 
a microscope with digital camera. Finally, the 
MFA of 30 fibres adjacent and 30 fibres distant 
from vessel were analysed using an image analysis 
software (Image J ver.1.42q Wayne Rasband, 
National Institute of Health, USA) (Figure 2). 

RESULTS AND DISCUSSION 

Chemical composition 

To understand the variation of chemical 
components of fibres, depending on the distance 
from the vessel, PCA based on FTIR spectra 
was performed in the region of 1550–1200 
cm-1 (Figure 3) and 1200–800 cm-1 (Figure 4), 
the latter termed as ‘finger print’. Figure 3a 
and b show the original and second derivative 
spectra, 1550–1200 cm-1, respectively. The PCA 

Figure 1 	 Groups of fibre based on their distance 
from vessel
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score plots using second derivative spectra was 
clearly classified according to PC1 axis, as shown 
in Figure 3d, where distant fibres localised on 
the right side while those adjacent to the vessel 
shifted to the left. In order to find the key 
components separating adjacent fibres from 
distant ones, the loading vector from PC1 was 

calculated in the corresponding region (Figure 
3c). PC1 loading showed a noticeable positive 
band at 1504 cm-1 which was assigned to the 
aromatic skeleton from lignin, similar as reported 
by Pandey (1999) (Table 1). The lignin content 
can be estimated from the relative area of the 
1505 cm-1 band, since a linear relationship is 

Figure 2      MFA measurement with the indication of precipitating iodine crystals

Figure 3	 (a) original spectra in the range of 1550–1200 cm-1, (b) secondary derivative spectra, (c) PC1 loading 
and (d) PCA score plots for fibres in relation to their distance from the vessel
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Table 1     The FTIR bands used for analysis and their assignment to lignin (Pandey 1999)

Band position (cm-1) Assiginment Structural component

1504 Aromatic skeletal vibration lignin

1463 C–H deformation hemicellulose, lignin

1453 C–H deformation hemicellulose, lignin

1424 O–H in-plane deformation cellulose

COO– stretch aromatic skeletal 
vibration

hemicellulose, lignin
lignin

1374 C–H deformation cellulose, hemicellulose

1334 C–H in–plane deformation cellulose, hemicellulose

1316 C–H in–plane deformation cellulose, hemicellulose

1264 C–O guaiacyl ring lignin

1230 C–O guaiacyl ring lignin

Figure 4	 (a) original spectra 1200–800 cm-1, (b) secondary derivate spectra, (c) PC2 loading spectrum and 
(d) PCA score plots for fibres in relation to their distance from the vessel
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found to exist between its area and lignin content 
(Popescu et al. 2011, Hauptmann el al. 2013, 
Jiraprasertwong et al. 2014, Avram et al. 2015). 
Since PCA was conducted by applying second 
derivative spectra (Figure 3b), the positive band 
specific to aromatic framework vibration in 
loading vector suggested that higher quantities 
of lignin were accumulated in the fibre region 
adjacent to the vessel rather than distant from 
the vessel. 
	 Figure 4a and b show the original and second 
derivative spectra in the range 1200–800 cm-1, 
where stretching vibrations of C–O, C–C, ring 
structures and deformation vibrations of CH2 
groups are involved (Synytsya et al. 2010). It has 
been reported that the corresponding region is 
useful for identification of polysaccharides, and 
therefore PCA was employed to make score plots 
which showed clear distinction between fibres 
adjacent and distant to vessel, along the PC2 
axis (Figure 4d). Bands from 950–1200 cm-1 are 
mainly carbohydrates (Bui et al. 2015). The PC2 
loading exhibited strong positive signals at 1060 
and 1034 cm-1 (Figure 4c), the bands of which 
are specific to C–O stretching vibrations related 
to polysaccharides (Pandey 1999, Gierlinger et 
al. 2008), whose assignments on carbohydrate 
are summarised in Table 2. Score plots and PC2 
loading, obtained from the finger print region, 
demonstrated that fibres located close to the 
vessel tended to have less sugars compared to 
those distant from the vessel.
	 Comparison of fibre length and chemical 
contents, estimated by FTIR spectra, showed that 
adjacent fibres were shorter, with higher relative 
lignin content (lignin height/CH height) and 

lower relative carbohydrates (C-O height/CH 
height), compared to distant fibres (Figure 5). 
T-test was preformed to study the difference 
in lignin and carbohydrate contents between 
fibres, adjacent and distant from vessel, based 
on values of transmittance spectra (n = 15).  
The mean of lignin content for fibres adjacent 
and distant from vessel were 0.141 and 0.124, 
respecively, while for carbohydrate content were 
0.547 and 0.600, respectively. Statisically, the two 
groups of  lignin and carbohydrate contents were 
significantly different. The results are in line with 
a previous study (Yahya et al. 2010), showing that 
fibre length is negatively correlated with lignin 
content (r = −0.70) and positively correlated with 
holocellulose (r = 0.92). 

Variation of MFA 

Measurement of MFA by iodine technique 
showed a variation of 21.9°–47.1° in distant 
fibres, while the values for adjacent fibres had 
a range of 64.0°–78.0°. Distribution of MFA of 
fibres, depending on their distance from the 
vessels, is shown in Figure 6. The average of the 
MFA fibres, adjacent and distant from the vessel, 
were 69.6° and 32.0°, respectively. Tabet & Aziz 
(2010) reported that MFA of A. mangium at  
90 mm distance from pith is 30.6°, assuming that 
the position of fibres measured were those apart 
from the vessel. The MFA results supported a 
previous study that reported the effect of the 
presence and quantity of vessels in hardwoods, 
on MFA (Bonham & Barnett 2001). The results 
are in line with previously reported data on the 
negative relationship between MFA and fibre 

Table 2 	 The FTIR bands used for the analysis and their assignment to 
carbohydrate component   (Pandey 1999, Gierlinger et al. 2008) 

Band position (cm-1) Assiginment Structural component

1161 C4–O–C1 asymmetric vibration cellulose, hemicellulose

1126 C–O stretch from polysaccharide and 
C–H deformation of aromatic ring

cellulose, hemicellulose
lignin

1108 Glucose ring stretch cellulose, hemicellulose

1060 C–O stretch cellulose, hemicellulose

1034 C–O stretch cellulose, hemicellulose

987 C–O stretch cellulose, hemicellulose

897 C1–H deformation cellulose, hemicellulose
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Figure 5 	 Comparison of fibre length, lignin height/CH height ratio and C–O height/CH height ratio in 
fibres according to distance from the vessel

Table 3 	 Comparison of chemical composition in relation to distance from vessels based on value of 
transmittance spectra

Variables Adjacent to vessel Distant to vessel Significant difference

Average SD Average SD

Lignin height/CH height 0.141 0.0098 0.124 0.0157 **

C-O/CH height 0.547 0.0706 0.600 0.0869 **

Note: significant at 1% level, SD =  standard deviation

length (Preston 1934).  The results also confirm 
previous data, showing that fibres close to vessels 
are shorter than those futher away (Yahya et al. 
2011). 

CONCLUSIONS

The combined FTIR wi th  mult ivar ia te 
analysis succesfully determined the chemical 
composition of fibre, based on their distance 
from vesse l s .  Higher  l ignin and lower 
carbohydrate content were attained from 

fibres adjacent to vessel compared to distant 
ones. For MFA, higher value (69.6°) was 
gained for fibres adjacent to vessel than the 
others (32.0°). From the study, it was clear that 
fibres’ distance from vessel affected quality, 
especially in chemical composition and MFA. 
Therefore, the utilisation of fibres of wood or 
other lignocellulosic materials as pulp should 
take into account the amount of vessels in the 
feedstock, since more vessels produce lower 
pulp strength and pulp yield which eventually 
increase production cost.
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