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INTRODUCTION

Global climate change affects the survival and 
development of all species on earth. Reducing 
carbon emission and enhancing carbon sinks 
via biological approaches are the main ways to 
lower atmospheric CO2 concentration (Kramer 
1981, Waring & Schlesinger 1985). Forests are 
one of the most productive terrestrial ecosystems. 
Forests account for 90% of the annual exchange 
of carbon between terrestrial ecosystem and 
the atmosphere, through photosynthesis and 
respiration (Fang et al. 2001, 2006). Therefore, 
forest vegetation carbon sinks play a key role in 
the global carbon cycle. Global carbon storage 
of forest vegetation is estimated at 359 to 744 
Pg C (Li et al. 2003). Forest vegetation in the 
northern hemisphere is an important carbon 
sink, especially in China (Fan et al. 1998). Forest 
carbon sink in China accounts for 44.4–63.2% 
of the total global forest carbon sink (Pan et al. 
2011), while the forest carbon storage in China 
accounts for 77% of the global total carbon 
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storage of terrestrial vegetation (Dixon et al. 
1994).
	 Hunan is an important forestry province 
in China. Its forest carbon sinks have positive 
significant contribution in facing the challenge 
of global climate change (Li et al. 2015). 
Forest resources in Hunan play crucial role 
in maintaining the carbon and ecological 
balance, and conserving water resources in 
Dongting Lake and the watershed in Yangtze 
River (Meng 2014). With the implementation 
of phases I and II of the Returning Farmland 
to Forest Programme (hereafter RFFP), forest 
resources in Hunan have been considerably 
restored in recent years, and the composition of 
forest vegetation types has changed significantly. 
Research on carbon storage in forest vegetation 
could provide useful information about the 
current status of forest resources and also be an 
important reference for the future management 
of those resources.
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	 Recent studies have used biomass methods 
to estimate and analyse forest vegetation and 
carbon storage. The carbon storage and carbon 
density in Hunan has been calculated and 
the spatial distribution analysed by Jiao et al. 
(2005) based on inventory data of national 
resources from 1990 till 1995. Forest vegetation 
and soil carbon storage in Hunan has been 
estimated using measured and inventory data of 
national resources from 1999 to 2003. The forest 
vegetation carbon storage in Hunan from 2000 
to 2011 was calculated by Yin and Zhou (2013). 
While these studies have estimated carbon 
storage for Hunan forests, models simulating 
forest vegetation carbon storage in Hunan have 
not yet been developed. 
	 Spatial changes of carbon storage in forest 
vegetation have been studied using several 
models including the system dynamics model 
(He et al. 2005), cellular automata (CA) (Xiong 
et al. 2005), CLUE-S model (Zheng et al. 
2012), multi-agent model (Ralha et al. 2013), 
CA-Markov (Hou et al. 2004), artificial neural 
network (Tayyebi et al. 2010), ANN-CA model 
(Li & Yeh 2002) and LESP model (Zhang & Cui 
2001). The CA model has advantage over spatial 
calculation in temporal evolution, whereas the 
Markov model is suitable for spatial calculation 
(Liu & Chen 2002). Unlike the CA and Markov 
models, the CA-Markov model works well for 
both spatial simulation and temporal evolution 
(Yang et al. 2007). Therefore, the CA-Markov 
model has been widely and effectively used for 
spatial dynamic simulation and prediction of 
landuse changes. Spatial dynamic simulation of 
carbon storage in Hunan using the CA-Markov 
model has not been studied.
	 The objectives of our study were to analyse 
the dynamics and spatial distribution of forest 
vegetation carbon storage in Hunan and to 
investigate spatial simulation of the forest carbon 
stocks. 

MATERIALS AND METHODS

Study area

Hunan Province is located to the south of the 
Dongting Lake in central China, along the middle 
reaches of the Yangtze River. It has a total area of 
211,800 km2 and governs over 13 municipalities 
and one autonomous prefecture. The province 
is in the subtropical monsoon climate zone with 

four distinct seasons, namely, humid and rainy 
spring, hot, long and humid summer, drought 
fall, and short and humid winter. Mountains in an 
asymmetric horseshoe shape span the province in 
the east, south and west, with low terrain in the 
central and north-eastern regions. Mountains 
and hills account for 66.6% of the total area of 
the province. Complex terrain characteristics 
and a good climate enrich the diversity of forest 
vegetation (Liu et al. 2016).
	 Forest vegetation in Hunan Province is divided 
into four types: montane forest, production forest, 
bamboo forest, and shrubland (Anonymous 2013). 
Montane forest species include Cunninghamia 
lanceolata, Pinus massoniana, Cupressus funebris, 
Pinus elliottii, Populus spp., Eucalyptus robusta 
and mixed species of Taxodiaceae (Metasequoia 
glyptostroboides, Taxodium ascendens, Taxodium 
distichum and Glyptostrobus pensilis).

Data sources

Forest resource data for Hunan Province for 
the years 2000, 2005, 2010 and 2015 were 
obtained from the annual report on Hunan 
Forest Resources Statistics (Anonymous 2017). 
The inventory data of national resources, 
administrative division data, remote sensing 
satellite data, and the forest resources distribution 
data for Hunan Province for those years are 
available at the inventory database of Hunan 
Forest Resources. These data were used in this 
paper. 

Estimation of carbon stock

In this study, we estimated carbon stocks in the 
four different forest vegetation types in Hunan 
Province, namely montane forest, production 
forest, bamboo forest and shrubland (Table 1). 
Carbon storage (t C) of forest vegetation was 
calculated as the product of forest vegetation 
biomass (t) and carbon content factor (g C g-1), 
i.e. carbon content of each gram of material. 
Average carbon content of each forest type 
was cited from Fang et al. (2007), Piao et al. 
(2009), Hu et al. (2015) and Liu et al. (2016). 
Biomass of montane forest was calculated using 
the continuous function method of biomass 
conversion factor (Guo et al. 2013), which is 
commonly used in China. Biomass values from 
a previous simulation (Yin et al. 2010) were 
used for C. lanceolata, P. elliottii, P. massoniana 
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and broad-leaved trees. Biomass of production 
forest was estimated using the average biomass of 
production forest (He et al. 1996). Total number 
of bamboo plantations and average biomass of 
per plant was used to estimate biomass of bamboo 
forest (Fang et al. 1996). Since there were few 
studies on the biomass of shrubland, shrub area 
and average biomass per unit shrub area were 
used to estimate the biomass of shrubland. In our 
study, we used the Kriging interpolation model 
to estimate forest vegetation carbon stocks, the 
CA-Markov model to simulate changes in these 
carbon stocks, and Kappa coefficients to verify 
the results.

The Kriging interpolation model

The Kriging spatial interpolation model 
assumes a complex geospatial relationship 
among the spatially continuous objects, and a 
stochastic model should fit them with mutual 
influence (Cheng et al. 2013). The model 
is based on the autocorrelation of spatial 
attributes. Thus, interpolation results are 
close to the natural distribution state, which 
can reflect mutual influence and relationship 
among objects. Building on variogram and 
structure analysis, we use the model to conduct 
unbiased and optimal estimation on spatial 
variables.

CA-Markov model simulation

The CA-Markov model is used to simulate and 
forecast landuse changes in the field of landscape 
ecology. The change forecasting model in the 
CA-Markov model defines the transfer rules 
of different spatial data using multi-criteria 
evaluation and a multi-objective decision support 
system. In this paper, the CA-Markov model 
(Hou et al. 2004, Liu 2005) was used to estimate 
carbon storage in the base period as the initial 
state. Based on the baseline, previous carbon 
storage transformation area and carbon storage 
distribution types of the suitable pixels, carbon 
storage spatial distribution types are recalculated 
until reaching the area of carbon storage type 
predicted by the Markov chain.
	 The CA model is a time-space computational 
dynamics model. Each variable is in a spatial 
discrete state, and the state change rule is 
expressed locally and temporally in time and 
space. The model is:

	 S(t + 1) = f (St, N)

where, S = cellular dispersion, the effective state 
set, N = cellular domain; t, t + 1 = time series and 
f = principle of local cellular state transformation. 
	 The Markov model is a non-after-effect special 
stochastic process, which treats the object as an 

Table 1	 Carbon storage calculations for the 11 forest types in Hunan Province 

Forest type Formula for  
biomass (B) (t)

Correlation 
coefficient

Unit biomass Carbon coefficient
(g C g-1)

Montane forest   

Cunninghamia lanceolata B = 0.3999 × V + 22.5410 0.97 - 0.508

Pinus massoniana B = 0.52 × V - - 0.520

Broad-leaved trees B = 1.0357 × V + 8.0591 0.91 - 0.500

Cupressus funebris B = 0.6129 × V + 26.1451 0.98 - 0.551

Pinus elliottii B = 0.5168 × V + 33.2378 0.97 - 0.515

Populus spp. B = 0.4754 × V + 30.6034 0.93 - 0.494

Eucalyptus robusta B = 0.7893 × V + 6.9306 1.00 - 0.494

Mixed Taxodiaceae B = 0.4158 × V + 41.3318 0.94 - 0.508

Production forest B = A × S - 23.52 t ha-2 0.484

Bamboo forest B = (AB × NB) × 1000 -1 - 22.5 kg plant-1 0.486

Shrubland B = A × S - 19.76 t ha-2 0.484

V = stand volume, carbon stock = biomass × carbon coefficient, A = biomass of the area under that forest type, S = area 
under that forest type, AB = average biomass of a single bamboo plant, NB = number of bamboo plants 
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independent system. Therefore, the state of a 
motion system at T + 1 (t + 1) time is only related 
to the state at T(t) time, not to former state. The 
model formula is: 

	 S (t + 1) = Pij  St

where, St and S(t + 1) are the state of the cellular 
in the time series and Pij = transition probability 
matrix. The transition formula is:

	 Pij =  

where, Pij = the probability that the land type i 
is transferred to j and 0 ≤ Pij ≤ 1, and the sum 
of the probabilities of each row is 1, where i   
(1, n), j  (1, n).

Kappa coefficient verification

In the present study, the accuracy of data 
processing was mainly verified using the validate 
module in IDRISI (He et al. 2011). Kappa 
coefficients were selected to check data precision, 
including the number Kappa coefficient (Kno), 
location Kappa coefficient (Kloc), and standard 
Kappa coefficient (Kstd). Quantitative analysis of 
the changes (spatial distribution and quantity) 
in carbon storage for the four forest types 
was conducted to validate the objectivity, 
comprehensiveness and accuracy of the results 
(Bai et al. 2005).
	 The number Kappa coefficient (Kno) indicated 
the consistency of the spatial carbon storage 
distribution patterns at different levels without 
spatial location changes. The location Kappa 
coefficient (Kloc) indicated the consistency 

of carbon storage distribution in two periods 
under certain conditions. The standard Kappa 
coefficient (Kstd) showed the consistency of 
ranked carbon storage distribution under an 
appropriate position.

RESULTS

Changes in forest vegetation carbon storage

From 2000 to 2015, implementation of the RFFP 
in Hunan resulted in significant changes in 
forest vegetation carbon storage in the province. 
Hunan forest carbon stocks were 147.9, 177.2, 
181.1 and 235.3 Tg C in 2000, 2005, 2010 and 
2015 respectively (Table 2). From 2000 to 2015, 
montane forest and bamboo forest carbon 
storage increased sharply from 77.5 × 106 to  
152.5 × 106 t and 33 × 106 to 61.8 × 106 t respectively. 
During that same time period, carbon storage of 
production forest decreased from 23.4 × 106 

to 10.9 × 106 t and shrubland carbon storage 
fell from 14.0 × 106 to 10.1 × 106 t. The carbon 
storage of montane forest increased nearly 40% 
from 2000 to 2005, 6.6% from 2005 to 2010, and 
32.1% from 2010 to 2015. Bamboo forest carbon 
storage increased 29.3% from 2000 to 2005, fell 
by 3.7% from 2005 to 2010 and went up 50.4% 
from 2010 to 2015. These results corresponded 
to the changes in the areas under montane forest 
and bamboo forest in the province (Anonymous 
2017). Production forest carbon storage had 
consecutive drops of 37.1, 19.1, and 8.4% every 
five years from 2000 till 2015. During those time 
periods, shrubland carbon storage fell by 17.9%, 
increased by 12.7%, but dropped again by 20.5% 
in the last five years of the study. The recorded 
decreases in shrubland carbon storage could be 
attributed to deforestation occurring because 
of lack of forest protection, while the increase 
in carbon storage could be due to less human 
disturbance (Li et al. 2015). 

Table 2	 Carbon storage (million t) of the four main forest vegetation types in Hunan Province from 2000 
to 2015

Year Montane forest Production forest Bamboo forest Shrub wood Total

2000 77.5 23.4 33.0 14.0 147.9

2005 108.3 14.7 42.7 11.5 177.2

2010 115.4 11.9 41.1 12.7 181.1

2015 152.5 10.9 61.8 10.1 235.3
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	 The RFFP has resulted in the increase of 
total forest cover in Hunan Province (Yin et al. 
2010), thus leading to significant change in the 
total amount of forest vegetation carbon storage. 
In the present study, total carbon storage went 
up by 59.1% from 2000 to 2015 (Table 2). The 
2008 snowstorm that damaged significant areas 
of forest affected carbon stock increment from 
2005 to 2010. During that time period, carbon 
stocks increased by only 2.2%, whereas increases 
of 19.8 and 29.9% were recorded for the five-year 
periods before and after respectively (Zhou et al. 
2011).

Spatial variation in forest vegetation carbon 
storage

The spatial distribution map of forest carbon 
storage in Hunan from 2000 till 2015 showed 
that carbon storage was correlated to the 
distribution of forest vegetation (Figure 1). The 
highest carbon storage of forest vegetation was 
located in XiangxiTujia Nationality Autonomous 
Prefecture, and Huaihua and Shaoyang 
prefectures in western Hunan. Slow socio-
economic development, less intensive human 
disturbances and better forest protections are 
likely to contribute to the high carbon storage 
in the three prefectures (Duan et al. 2016). 
Northern Hunan (Changde and Yueyang 
prefectures) and southern Hunan (Chenzhou, 

Hengyang and Yongzhou prefectures) also 
had large carbon storage. The implementation 
of the RFFP increased the area under forest 
cover, especially in Yongzhou and Chenzhou, 
thus increasing carbon storage in these two 
prefectures. Due to rapid urban and socio-
economic development in the cities of Changsha, 
Zhuzhou and Xiangtan, forest vegetation carbon 
storage were lowest there.

Spatial simulation of forest vegetation carbon 
storage 

Spatial distribution of carbon storage was closely 
related to the distribution of forest vegetation. 
The CA-Markov model was used to simulate 
spatial variability of carbon storage in forest 
vegetation. Using ArcGIS, the values of carbon 
stocks from 2000–2015 were reclassified into the 
following five classes by means of the natural 
breaks method (Hui et al. 2016): I (2.319, 
10.0208), II (10.0208, 13.0331), III (13.0331, 
16.7986), IV (16.7986, 20.8652), and V (20.8652, 
29.117), in units of ×106 t. Spatial intersections 
were conducted between 2000 and 2005, 2005 
and 2010, and 2010 and 2015, and corresponding 
space transfer matrixes generated.
	 Large transformations occurred between 
different classes with the highest transformation 
of carbon storage distribution seen from class I 
to II (Table 3). Carbon storage distribution also 

Table 3	 Transition probability matrix of carbon storage space in Hunan Province for 2000–2005, 
2005–2010 and 2010–2015

2000
 Class I Class II Class III Class IV Class V

2005

Class I 0.2121 0.0000 0.0000 0.0000 0.0000
Class II 0.0849 0.0283 0.0000 0.0000 0.0000
Class III 0.0000 0.0389 0.0201 0.0000 0.0000
Class IV 0.0000 0.0000 0.0824 0.0164 0.0000
Class V 0.0000 0.0000 0.0319 0.0679 0.0621

2005
 Class I Class II Class III Class IV Class V

2010

Class I 0.1066 0.0242 0.0000 0.0000 0.0000
Class II 0.1056 0.0599 0.0134 0.0000 0.0000
Class III 0.0000 0.0291 0.0363 0.0322 0.0000
Class IV 0.0000 0.0000 0.0093 0.0642 0.0568
Class V 0.0000 0.0000 0.0000 0.0024 0.1051

2010
Class I Class II Class III Class IV Class V

2015

Class I 0.0132 0.0000 0.0000 0.0000 0.0000
Class II 0.0440 0.0069 0.0000 0.0000 0.0000
Class III 0.0735 0.1470 0.0129 0.0000 0.0000
Class IV 0.0000 0.0000 0.0000 0.0000 0.0002
Class V 0.0000 0.0000 0.0320 0.1213 0.1072
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transformed from class III to classes IV and V. The 
transformation of carbon storage distribution 
from class IV to V was the lowest. Forest vegetation 
distribution in Hunan changed dramatically from 
2000 to 2005, leading to notable transformation 
in different carbon storage areas.
	 From 2005 to 2010, carbon storage distribution 
transferred from class I to class II and from class II 
to classes I and III (Table 3). The transformation 
of carbon storage distribution from class II to III 
was the highest. Transformation also occurred 
from class III to II and IV, from class IV to III 
and V as well as from class V to IV. There was a 
dramatic change in the distribution of different 
carbon storage in Hunan Province from 2005 
to 2010. This might be caused by the 2008 
snowstorm that extensively damaged the forested 
areas (Zhou et al. 2011).
	 From 2010 to 2015, there was obvious 
transformation between different carbon storage 
distribution areas (Table 3). Carbon storage 
distribution area of class I transferred to classes 
II and III, and the transformation from class I 
to III was the highest (Table 3). Transformation 
occurred from class II to III, from class IV to V 
as well as from class V to IV. These positive gains 
were the result of active protection measures 

that promoted restoration of forest vegetation in 
Hunan after the 2008 snowstorm. The resulting 
changes in forest vegetation led to marked 
transformation between different carbon storage 
distribution areas.
	 From 2000 to 2015, there was drastic 
transformation between different carbon storage 
classes. Based on the space transition matrices 
of 2000 and 2005, and 2005 and 2010, forest 
vegetation carbon storage in Hunan in 2015 
was simulated using the CA-Markov model in 
IDRISI software. The distribution area of carbon 
storage in classes II, III and V fell drastically, 
while carbon storage distribution area in classes 
I and IV increased significantly (Figure 2). 
The implementation of the RFFP and active 
protection after the 2008 snowstorm impacted 
the distribution of forest vegetation in the 
province.

Kappa coefficients

Kno values of 0.6327, 0.6724, 0.4050 and 0.3839 
for 2000–2005, 2005–2010, 2010–2015 and 2015–
2015 respectively (Table 4), indicated changes 
in carbon storage (independent of location) 
of 36.7, 32.7, 59.5 and 61.6% respectively. Kloc 

Figure 1      Spatial changes in carbon storage in Hunan Province from 2000 to 2015
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values of 0.7637, 0.7902, 0.5961 and 0.5416 for 
2000–2005, 2005–2010, 2010–2015 and 2015–
2015 respectively indicated changes in carbon 
storage, regardless of the ranked distribution 
area, of 23.6, 21.0, 40.4 and 45.8% respectively. 
Kstd values of 0.6061, 0.6544, 0.03801 and 0.0355 
for the same years respectively suggested that 
39.4, 34.6, 62.0 and 64.4% of ranked carbon 
storage distribution areas changed under the 
condition of maintaining a moderate ranked 
carbon storage distribution area. All Kappa 
parameters indicated that the RFFP, the 2008 
snowstorm and active ecological protection had 
significant impacts on the spatial carbon storage 
distribution of forest vegetation.

DISCUSSION

Hunan forest carbon stocks were 147.9, 177.2, 
181.1 and 235.3 Tg C in 2000, 2005, 2010 and 

2015 respectively. Our results are close to the 
173.974 Tg C reported by Jiao et al. (2005), but 
much lower than the 594.94 Tg C calculated 
by Yin and Zhou (2013). The variation can 
be attributed to differences in data sources, 
calculation methods, time scales, vegetation types 
and C coefficients. In the present study, forest 
vegetation was comprehensively divided into  
11 types, with multiple C coefficients—unlike the 
use of a single C coefficient by Jiao et al. (2005).
Therefore, we considered the present study 
results more accurate. 
	 Carbon storage of the different vegetation 
types in decreasing order were: montane forest > 
bamboo forest > production forest > shrubland. 
Thus, montane forest are recommended as the 
best plantation tree species in Hunan Province, 
and that montane and bamboo forests must 
be better protected. Difference in spatial 
distribution of vegetation carbon storage in 

Figure 2     Actual (a) and simulated (b) spatial distribution of carbon storage of Hunan Province in 2015

Table 4	 Spatial check Kappa coefficients used to validate carbon stock simulations for periods 
between 2000 and 2015

2000–2005 2005–2010 2010–2015 2015–2015

Number Kappa coefficient, Kno 0.6327 0.6724 0.4050 0.3839

Location Kappa coefficient, Kloc 0.7637 0.7902 0.5961 0.5416

Standard Kappa coefficient, Kstd 0.6061 0.6544 0.3810 0.3565

(a) (b)
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Hunan was extremely varied, with the highest 
forest vegetation carbon storage in north-west 
Hunan, lower in north and south Hunan and 
lowest in the Changsha–Xiangtan–Zhuzhou 
cluster. More research in these separate regions 
are needed to formulate forestry policies on, 
e.g. imposing quotas on timber harvesting in 
north-west Hunan, encouraging forest planting 
in north and south Hunan, balancing urban 
expansion and urban green space protection, 
and implementing ecological green core quality 
improvement programmes in the Changsha–
Xiangtan–Zhuzhou cluster. 
	 Topographic factors such as forest age, 
meteorological data, more detailed vegetation 
classification and a smaller cellular scale in 
the CA-Markov model were not considered 
in the present study due to data limitations. 
With increasing data availability and improved 
data quality, relationships between vegetation 
carbon stock distribution and meteorological 
factors may be better elucidated in future. This 
information will, in turn, provide valuable 
information to guide forest management and 
landuse practices.
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