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Assessing genetic diversity and population structure with multiple marker systems provides critical
insights for the conservation and sustainable management of tropical tree species. We applied simple
sequence repeats (SSRs) and genome-wide single nucleotide polymorphisms (SNPs) to characterise
genetic variation in Rubroshorea leprosula, a widely distributed dipterocarp in Southeast Asia. SSRs
revealed higher allelic richness and heterozygosity, consistent with their multi-allelic nature and high
mutation rates, whereas SNPs produced more conservative but genome-wide estimates of diversity. SNP
analyses indicated consistently negative inbreeding coefficients and relatively high nucleotide diversity
(m=10.008-0.010), suggesting substantial standing variation and strong adaptive potential. Population
differentiation indicates a higher value with SSRs (f5r = 0.061) than with SNPs (fsr = 0.027), reflecting
the ability of SSRs to detect finer-scale versus the genome-wide connectivity captured by SNPs. Both
marker systems consistently identified two major genetic clusters aligned with a north—south division
across Peninsular Malaysia, with admixture indicating historical or ongoing gene flow. A localised
inbreeding signal was detected in the Belum-Temenggor complex, highlighting populations at
elevated risk under fragmentation. Together, these results demonstrate the complementary strengths
of SSRs for detecting rare alleles and local differentiation, and SNPs for capturing broad genomic
patterns. Integrating both marker systems strengthens conservation planning by informing strategies
for maintaining connectivity, and guiding conservation effort to safeguard the adaptive capacity and
genetic potential of R. leprosula.
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INTRODUCTION

Tropical lowland forests of Southeast Asia are
among the most biological diverse ecosystems
globally, yet they are also experiencing some
of the highest rates of deforestation and
degradation (Sodhi et al. 2004). Land-use
change and agricultural expansion have driven
extensive habitat loss and fragmentation,
threatening the persistence of many forest tree
species (Boonman et al. 2024). The dipterocarps
(family Dipterocarpaceae) dominate these
forests in terms of the ecological importance,
and significant economic value as a source of
high-quality tropical timber. Consequently, the
decline of dipterocarp populations poses serious
ecological and socio-economic challenges,
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highlighting the urgency of developing effective
strategies for their conservation and sustainable

management.

Rubroshorea  leprosula  (formerly  Shorea
leprosula) is a widely distributed dipterocarp
species  that inhabits lowland tropical

forests across Peninsular Malaysia, Sumatra
and Borneo (Symington et al 2004). It is
ecologically significant as a canopy-forming
species and economically valuable due to its
high-quality timber. However, ongoing logging
and land conversion activities are expected to
substantially reduce the effective population
size of R. leprosula and increase population
fragmentation over time. Hence, maintaining
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the genetic diversity of this species is therefore
critical safeguarding its adaptive potential,
long-term survival and sustainable utilisation
(Ng et al. 2004, Ng et al. 2006, Ng et al. 2009,
Lee et al. 2016). Understanding population
genetic structure therefore provides a scientific
foundation for conservation  planning,
particularly in the context of ongoing habitat
loss and climate change.

Molecular markers are powerful tools for
evaluating genetic variation and inferring
population structure. Traditionally, simple
sequence repeat (SSR) markers have been
widely applied in tropical tree studies due
to their high polymorphism, codominant
inheritance and effectiveness in capturing fine-
scale diversity (Tautz & Renz 1984, Blankenship
et al. 2002, Abdelkrim et al. 2009). More
recently, advances in sequencing technologies
have enabled genome-wide single nucleotide
polymorphism (SNP) discovery, providing high-
resolution insights into the genetic structure,
demographic history and adaptive variation
(Davey et al. 2011). However, SSRs and SNPs
differ in their allelic nature, multiallelic versus
biallelic, respectively, which in turn influences
their capacity to detect genetic diversity and
differentiation. While SSRs often report higher
levels of heterozygosity, SNPs provide broader
genomic coverage (Filippi et al. 2015, Van
Inghelandt et al. 2010, Zavinon et al. 2020).
Comparative studies that employ both marker
types can therefore offer complementary
perspectives, yet such studies remain limited
for dipterocarp species.

In this study, we investigated the genetic
diversity and population structure of R.
leprosula across 22 natural populations in
Peninsular Malaysia using both SSRs and SNPs.
Specifically, we asked: (a) how do estimates
of genetic diversity differ between multiallelic
SSR markers and biallelic SNP markers? (b)
to what extent do population differentiation
(F5r) estimates derived from allele frequency
and genetic distance approaches converge or
diverge between marker systems? and (c) do
both marker types reveal consistent patterns
of population genetic structure? By integrating
SSR and SNP data, we aim to demonstrate the
value of a multi-marker approach to support
the conservation and long-term sustainable
management of R. leprosula.
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MATERIALS AND METHODS
Sample collection and DNA extraction

We collected fresh leaf samples from 714 R.
leprosulaindividuals across 22 natural populations
throughout its range in Peninsular Malaysia,
ensuring broad representation of the species’
geographical areas (Figure 1, Table 1). Total
genomic DNA was extracted using modified
CTAB method (Murray & Thompson 1980) and
further purified using High Pure PCR Template
Preparation Kit (Roche Diagnostics, Germany).
The integrity and quality of the DNA were
evaluated on 1% agarose gel electrophoresis
and the concentration of the DNA samples
was quantified using NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific,
USA). All the 714 samples were genotyped using
SSR markers. A subset of 111 samples (three to
six individuals per population) was selected for
whole genome resequencing.

SSRs analyses

Ten SSR markers, as described in Ng etal. (2022),
were used to genotype all the 714 individuals
of R. leprosula. Multiplex PCR amplification
and genotyping for each SSR marker were
conducted following established protocols,
with an annealing temperature at 55 °C (Ng
et al. 2022). Fragment analysis was conducted
on ABI 3130x] capillary sequencer (Applied
Biosystems, USA), with GeneScan 400HD ROX
as the size standard (Applied Biosystems, USA).
Subsequently, GeneMarker v2.6.4 software was
used for alleles scoring.

SNPs analysis

A total of 111 high quality DNA samples from
22 populations were selected and outsourced for
whole genome resequencing. The DNA libraries
were sequenced on Illumina Hiseq and NovaSeq
platform with 8 Gb paired-end short reads and
target depth (~16x) per sample. The raw reads
were evaluated with FastQC version 0.11.8
(Andrews 2010) and filtered using Trimmomatic
v0.40 (Bolger et al. 2014) to remove low-quality
reads and adapter sequences with default
parameters. All clean reads were mapped to the R.
leprosula chromosome-level genome assembly v2
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Figure 1 Geographical overview of 22 Rubroshorea leprosula populations sampled across Peninsular Malaysia.

A red line indicating the division between the Northern and Southern regions
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Table 1  Geographical areas and sample size for 22 natural populations of Rubroshorea leprosulain Peninsular
Malaysia used for SSR and SNP analyses
Population Abbreviation State Coor(iinate.s (Latitude, oo
ongitude) SSR SNP
Sungai Badak SBadak Kedah 6.46619, 100.53942 34 5
Bukit Enggang BEnggang Kedah 5.84055, 100.73063 35 6
Gunung Inas Glnas Kedah 5.50258, 100.78000 27 5
Royal Belum RBelum Perak 5.63040, 101.40138 39 4
Korbu Korbu Perak 4.88693, 101.29481 35 5
Ulu Gombak UGombak Selangor 3.31140, 101.70010 30 5
Sungai Lalang SLalang Selangor 3.09083, 101.87953 23 6
Gunung Angsi GAngsi Negeri Sembilan 2.72516, 102.05612 32 6
Kenaboi Kenaboi Negeri Sembilan 3.07017, 102.13643 28 5
Pasoh Pasoh Negeri Sembilan 2.99364, 102.32272 39 5
Bukit Senggeh BSenggeh Melaka 2.40398, 102.45575 30 5
Sungai Betis SBetis Kelantan 4.76461, 101.77117 34 5
Ulu Sat USat Kelantan 5.73222, 102.32856 26 6
Chabang Tongkat CTongkat Kelantan 5.87543, 102.25806 32 5
Hulu Terengganu HTerengganu  Terengganu 4.96598, 102.95417 32 6
Taman Negara TNegara Pahang 4.40228, 102.40273 39 3
Beserah Beserah Pahang 3.82756, 103.36250 30 5
Jengka Jengka Pahang 3.73798, 102.58297 34 5
Lentang Lentang Pahang 3.37562, 101.99458 33 6
Endau Rompin ERompin Johor - Pahang 2.53479, 103.37729 40 5
Labis Labis Johor 2.34681, 103.15914 27 3
Air Hitam AHitam Johor 2.04838, 102.77435 35 5

(Ng et al. unpublished data) using BWA-MEME
with default parameters (Jung & Han 2022).
Then, SAMtools v1.19 (Danecek et al. 2021) was
used to convert the mapping results to BAM and
sorted BAM format. Following this, Picard v3.1.1
(https://broadinstitute.github.io/picard/) was
used to remove PCR duplicates. SNP calling was
performed using ‘bcftools mpileup’ (Danecek et
al. 2021). To minimize false positives in variant
detection and retain only high-quality variants
for downstream analysis, a hard filtration was
applied to remove reads with the following
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criteria: (i) genotype quality < 20, (ii) coverage
depth < 5, (iii) minor allele frequency < 0.01
and missing rates > 20%. Besides, multiallelic
and monomorphic SNPs were also removed,
retaining only biallelic SNPs for the subsequent
analyses. The filtered SNPs were further phased
and imputed using Beagle vb.4 (Browning et
al. 2021). To minimize the effect of linkage
disequilibrium (LD) on population structure
inference, SNPs were subsequently LD-pruned
using PLINK v1.90 (Purcell et al. 2007) with
the parameter “- indep pairwise 50 10 0.2”. The
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resulting LD-pruned SNP dataset was specifically
used for population structure analyses, whereas
the unpruned dataset was retained for genetic
diversity analyses to maximize genome-wide
information (Schldtterer et al. 2014, Malomane
etal. 2018).

Genetic diversity

To assess and compare genetic diversity by SSR
and SNP markers, standard diversity indices were
calculated for each of the 22 natural populations.
These indices included the number of alleles
(A), observed heterozygosity (Hp), expected
heterozygosity (Hg), inbreeding coefficient (f1s),
and an additional nucleotide diversity (m) for
genome-wide SNP marker.

For the SSR dataset, genetic diversity
parameters and their corresponding standard
deviations were calculated using Microsatellite
Toolkit (Park 2008) and R packages such as
adegenet (Jombart 2008) and hierfstat (Goudet
2005). The genepop-formatted dataset was
imported using read.genepop() function in
adegenet and summary statistics were obtained
via basic.stats() function in hierfstat. Hardy-
Weinberg Equilibrium (HWE) tests were
conducted separately wusing the hw.test()
function in pegas (Paradis 2010). s values with
p < 0.05 were considered significant deviations
from HWE.

For the SNP dataset, genetic diversity was
assessed using the unpruned dataset, in line with
the dataset processing strategy described above.
Ho, Hyg as well as HWE statistics were computed
using the —hardy function in PLINKv1.90, which
is optimized for biallelic markers (Purcell et al.
2007). In addition, genome-wide nucleotide
diversity (m) was calculated using Pixy (Korunes
& Samuk 2021), which provides unbiased
estimates of genetic diversity by accounting for
missing data. Both variant and invariant sites
were included in the analysis, with n calculated
in non-overlapping 10 kb windows across the
genome. The genome-wide mean n values were
then obtained for each population. To measure
genetic variability, standard deviations (SDs)
for each parameter (Ho, Hg, Ks and m) were
calculated in R using the sd() function applied
to perlocus values within each population.
Statistical significance was determined using False
Discovery Rate (FDR)-adjusted p-values based on
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the Benjamini-Hochberg method (Benjamini &
Hochberg 1995), with a significance threshold of
0.05 to account for multiple testing and reduce
the likelihood of false positives across the large
number of loci. Pearson’s correlation tests were
conducted using the cor.test() function in R to
assess the relationship between genetic diversity
estimates derived from SSR and SNP markers.

and

Population structure

differentiation

genetic

Population structure was inferred using both
model-based clustering and multivariate
approaches tailored to each marker type. For the
SSR dataset, Bayesian clustering was performed
using STRUCTURE v2.3.4 (Pritchard et al.
2000) under the admixture ancestry model
with the LOCPRIOR option. Ten independent
runs were conducted for each Kvalue (1 to 6),
with a burn-in of 100,000 iterations followed by
200,000 Markov Chain Monte Carlo (MCMC)
steps. For the large SNP dataset, we applied
ADMIXTURE v.1.3.0 (Alexander et al. 2009),
a program that employs a maximum-likelihood
approach similar to STRUCTURE but enables
faster inference. The optimal number of
genetic clusters (K) was determined using
the Delta K method (Evanno et al. 2005) in
STRUCTURE SELECTOR (Li & Liu 2018) for
the SSR dataset and the cross-validation (CV)
method (Alexander & Lange 2011) for the
SNP dataset. Data from ten independent runs
of STRUCTURE and ADMIXTURE analyses
were graphically presented by CLUMPAK
(Kopelman et al. 2015). In addition, to
complement the Bayesian analysis, Unweighted
Pair Group Method with Arithmetic Mean
(UPGMA) trees were constructed to visualize
genetic relationships among inferred clusters.
For the SSR dataset, Nei’s D, genetic distance
was calculated and used to construct a tree
with POPTREE2 (Takezaki et al. 2014) with
1,000 bootstrap replicates.  For the SNP
dataset, a UPGMA tree was constructed using
the phangorn package in R (Schliep 2011) and
visualised in the Interactive Tree of Life (iTOL)
online tool (Letunic & Bork 2021).

Overall and pairwise genetic differentiation
was assessed among all populations and
between the major genetic clusters identified
by STRUCTURE and ADMIXTURE using two
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approaches which are fixation index (fsr) (Weir
& Cockerham 1984) and Jost’s D (Jost 2008).
Fsr quantifies differentiation relative to total
genetic variation but can be biased by high
within-population heterozygosity, whereas Jost’s
D measures allelic differentiation independently
of within-population diversity. Using both
approaches therefore provides a more robust
assessment and understanding of population
genetic structure.

For SSR data, overall and pairwise estimates
of Fsrwere calculated in Genepop 4.7 (Raymond
& Rousset 1995), while Jost’s D was computed
in R with the mmod package (Winter 2012).
While for SNP data, pairwise f5r was obtained
using the —-weir-fst-pop option in VCFtools and
Jost’s D was estimated with mmod. Statistical
confidence for both approaches was evaluated
by 1000 bootstrap replicates in R with hierfstat
(Goudet 2005), from which standard deviations,
95% confidence intervals and pvalues were
derived. Results with p < 0.001 were considered
statistically significant. The pairwise Fsr results
were visualized as bar plots with error bars and
histograms. To assess concordance between
marker types, correlation between SSR- and
SNP-derived Fsr matrices was evaluated using
both Pearson’s correlation and a Mantel test
(10,000 permutations) implemented in the
vegan package (Oksanen et al. 2025).

In addition, an analysis of molecular variance
(AMOVA) test was conducted to quantify the
distribution of genetic variation within and
among populations of R. leprosula. Analysis was
done according to Excoffier et al. (1992) with
the function poppr.amova from poppr package
(Kamvar et al. 2014) and the significance of the
analysis was tested with 999 permutations using
the randtest() function in the ade4 package
(Dray & Dufour 2007). Results with p < 0.001
were considered significant for both SSR and
SNP datasets.

RESULTS

Genetic diversity

A total of 714 R. leprosula individuals from 22
populations were genotyped using 10 SSR
markers, with sample sizes per population
ranging from 23 (SLalang) to 40 (ERompin)
(Table 1). All 10 SSR loci were polymorphic
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in the studied R. leprosula populations and
harboured a mean number of alleles (A)
ranging from 5.60 (CTongkat) to 8.90 (Pasoh)
(Table 2). The mean Hg and H, varied among
populations, Hy ranged from 0.557 + 0.063
(CTongkat) to 0.717 + 0.045 (GAngsi), and
H, ranged from 0.578 + 0.028 (CTongkat) to
0.689 + 0.024 (Pasoh and TNegara) (Table
2). Negative Is values were observed in six
populations (SBadak, CTongkat, TNegara,
SLalang, ERompin and AHitam), but none
deviated significantly from HWE, suggesting
no strong evidence of inbreeding within
these populations. In contrast, the RBelum
population exhibited a statistically significant
positive mean fis value (f1s=0.144 + 0.094, Table
2), indicating a heterozygote deficit consistent
with recent or ongoing inbreeding.

In the SNP dataset, a total of 642,335
high-quality genome-wide SNPs (unpruned)
were identified from a subset of 111 of
the 714 R. leprosula individuals genotyped
with  SSRs.  Sample size per population
ranged from 3 (TNegara and Labis) to 6
individuals (BEnggang, SLalang, GAngsi,
USat, HTerengganu and Lentang) (Table 1).
SNP-derived diversity estimated for Hg values
ranged from 0.224 + 0.186 (GlInas) to 0.260
+ 0.185 (SLalang; Table 2). However, the Ho,
was consistently higher across all populations
(ranging from 0.328 + 0.322 to 0.397 + 0.342),
resulting in uniformly negative I values
ranging from -0.371 + 0.300 to -0.509 + 0.340
(Table 2). Nevertheless, these negative fis values
were not statistically significant after applying
the Benjamini-Hochberg false discovery rate
(FDR) correction at 0.05, indicating no strong
deviation from HWE in SNP data. In addition,
the high and consistent genome-wide average
n values across R. leprosula populations ranging
from 0.008 + 0.007 to 0.010 + 0.010 (Table 2)
are considered evidence of substantial genetic
variation and potentially higher heterozygosity.

Pearson correlation analysis was conducted
to evaluate the concordance between genetic
diversity estimates (Hy, Ho and Fs) derived from
SSR and SNP markers across populations of R.
leprosula (Figure 2). The correlation between
SSR-based H;; and SNP-based H; was very low and
not statistically significant (r = 0.082, p = 0.716,
95% CI = [-0.352, 0.487]) (Figure 2A). Similarly,
Hy values yielded a weak, non-significant positive
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Figure 2 Pearson correlation analyses between genetic parameters estimated using SSR and SNP markers

across 22 populations of Rubroshorea leprosula. (A) Expected heterozygosity (Hg), (B) Observed
heterozygosity (Ho) and (C) Inbreeding coefficient (/is). Each black point represents a population.
The blue line shows the fitted linear trend with the grey shading showing the 95% confidence

interval

correlation between SSR and SNP datasets (r
= 0.106, p = 0.638, 95% CI = [-0.330, 0.505])
(Figure 2B). The correlation for f5s was also weak
and not significant (r=0.002, p = 0.993, 95% CI
=[-0.420, 0.423]) (Figure 2C). Collectively, these
findings indicate poor concordance between
SSR-and SNP-derived estimates of heterozygosity
and inbreeding (Hg, Ho and Fis), suggesting that
the two marker systems may capture different
aspects of the underlying genetic structure in R.
leprosula populations.

Population  genetic  structure and
differentiation
Both  clustering analysis (STRUCTURE

and ADMIXTURE) produced the highest
likelihood scores for both markers when the
number of populations was set at K= 2, dividing
22 populations in Peninsular Malaysia into two
main genetic clusters; Cluster A and Cluster B.

©Forest Research Institute Malaysia

Cluster A consists of five northern populations,
namely SBadak, BEnggang, GInas, RBelum and
Korbu, while Cluster B consists of the remaining
17 populations, namely UGombak, SLalang,
GAngsi, Kenaboi, Pasoh, BSenggeh, TNegara,
SBetis, USat, CTongkat, HTerengganu, Beserah,
Jengka, Lentang, ERompin, Labis and AHitam
(Figure 3A and Figure 3B). Notably, several
populations showed clear signs of admixture in
both datasets, with more pronounced patterns
observed in the SSR analysis.

Further sub-clustering within Cluster B
was detected in both SSR and SNP datasets,
resulting in two sub-clusters; Sub-cluster
Bl and Sub-cluster B2 (Figure 3), with K =
2 being the optimal value for both Delta K
(SSR) and minimum CV error value (SNP).
Using 266,270 SNPs (LD-pruned), the SNP
dataset provided higher resolution than SSRs,
grouping individuals from USat, CTongkat and
HTerengganu into Sub-cluster Bl (Figure 3A),
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Figure 3 Population structure analysis of Rubroshorea leprosula inferred using different marker systems.

(A) ADMIXTURE analysis of 111 individuals based on 266,270 LD-pruned SNPs and (B)
STRUCTURE analysis of 714 individuals genotyped with 10 SSR markers. Each column represents
a population. Dashed lines indicate main cluster and sub-cluster boundaries identified by each

marker system

whereas SSRs grouped only USat and CTongkat
into this sub-cluster (Figure 3B).

In addition, clustering analysis by UPGMA
was performed to ratify the groupings. The
result showed that the phylogenetic trees derived
from both marker systems were in agreement
with the findings of the population structure
analysis (K = 2) (Figure 4A and Figure 4B).
This clustering indicated that the populations
can be divided into two major distinct clusters
(Cluster A and Cluster B), suggesting substantial
genetic differentiation between them. Despite a
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clear separation between Cluster A and Cluster
B across both marker types, some individuals
and populations were assigned differently,
particularly in the SNP dataset. However, the
consistency between the UPGMA trees and
the population structure analysis supports the
validity of these results.

Overall population genetic differentiation
for Fyr was 0.061 for SSRs and 0.027 for SNPs
(Table 3, Figure 5A). Pairwise Isr comparisons
were subsequently estimated between major
population clusters using both marker types
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assignments assuming K= 2

Table 3  Estimates of genetic differentiation (f5r and Jost’s D) using SSR and SNP markers in Rubroshorea
leprosula
Comparison SSR SNP
Statistic
Mean + SD 95% CI Mean + SD 95% CI
Iy 0.031 + 0.008 0.018-0.049 0.011 + 7.06e-05 0.011-0.011
Cluster Avs B
Jost’s D 0.072 £ 0.048 0.016-0.204 0.001 + 2.73e-05 0.003 - 0.003
Fsr 0.061 + 0.006 0.051-0.073 0.027 + 9.67e-05 0.027-0.028
Overall
Jost’s D 0.122 £ 0.036 0.087 - 0.229 0.025 + 3.69¢-05 0.025-0.025

Values are presented as mean + SD with 95% confidence intervals (1000 bootstrap replicates).
All comparisons are significant (p < 0.001). SD = standard deviation; CI = confidence interval.

(Table 3, Figure b5A). Pairwise Isr estimates
between clusters (Cluster A vs. Cluster B) for SSR
and SNP was 0.031 + 0.008 and 0.011 + 7.06e-05,
respectively.

To complement the Fsr results, which may
underestimate divergence in cases of high within-
population diversity, we further examined allelic
differentiation with Jost’s D. For SSR markers,
the overall Jost’s D was 0.122 + 0.036 (95% CI:
0.087-0.229; p < 0.001), indicating moderate
allelic differentiation across populations. In

©Forest Research Institute Malaysia 493

contrast, the SNP dataset yielded a considerably
lower overall Jost’s D of 0.025 + 3.69¢-05 (95% CI:
0.025-0.025; p<0.001) (Table 3, Figure 5B). The
absolute allelic differentiation by SNP markers
was consistently lower than SSRs, with Cluster A
vs. Cluster B showing minimal divergence (Jost’s
D=0.001 + 2.73e-05; p< 0.001) (Table 3, Figure
5B).

Population genetic differentiation analysis
on variance component based AMOVA revealed
consistent patterns across both marker systems
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Comparison of genetic differentiation (fsrand Jost’s D) between SSR and SNP markers in Rubroshorea

leprosula. (A) Fsr and (B) Jost’s D. Bars represent mean values with error bars indicating + SD. All
comparisons are significant (p < 0.001) and SD = standard deviation

at the population level (Table 4). In the SSR
dataset, the majority of genetic variance was
found within populations (93.94%), and 6.07%
among populations (Table 4). The overall
genetic differentiation among populations has
a OST value = 0.061. Similarly, the SNP dataset
showed 93.47% of the variation occurred within
populations and 6.53% among populations,
with a relatively similar ®ST value of 0.065
(Table 4). These results indicate that most
genetic variation in R. leprosula resides within
populations, reflecting the species’ outcrossing
nature and high within-population diversity.
The histogram patterns of SNP-based
pairwise fsr and Jost’s D values were unimodal,
with most Fsr values concentrated below 0.02
(mean = 0.016; Figure 6A) and most Jost’s
D values below 0.030 (mean = 0.029; Figure
7A), reflecting a narrow range of low genetic
differentiation among most population pairs.

©Forest Research Institute Malaysia 494

In comparison, the histogram of SSR-based
pairwise Fsr and Jost’s D values showed a higher
mean value of 0.06 (Figure 6B) and 0.122
(Figure 7B) respectively. Majority of SSR-based
pairwise Fsy comparisons fell below the 0.05
threshold, indicating that most population pairs
exhibited low genetic differentiation. However,
a considerable proportion of comparisons
approached and exceeded 0.10, with some
reaching the moderate differentiation threshold
of 0.15. For Jost’s D, most values ranged between
0.05 and 0.15, with the highest frequency around
0.10-0.12, suggesting overall low to moderate
differentiation.

The Mantel test, which assesses the
correlation between distance matrices, revealed
a moderate and statistically significant positive
correlation (fsr: r=0.431, p=0.008), suggesting
overall concordance in genetic distance patterns
between SSR and SNP markers (Figure 6C). In
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Table 4 AMOVA results for Rubroshorea leprosula based on SSRs and SNPs dataset. The AMOVA partitions
genetic variation among and within populations

SSR SNP
o — Q —
Source of e » g g § g = 0 3 g § g 2z
Variation _ < ] ER) =) A3 _ @ = = g A
< = —~ n I o¥ . N
S TE g g - g
= 3 = = 3 =
& o
Among. 91 7934052 34.4479 04260 607 CSL= 9] 9748006 13086.171 676.3783 653  CoL=
populations 0.061 0.065
Within
populations 1406 9292.5123 6.6093 6.6116  93.94 89 861330.8 9677.874 9677.8743 93.47
(individuals)
Total 1427 10,015.917 - 7.0385  100.00 110 1136140.4 - 10354.2525  100.00
Df = degree of freedom; SS = sum of squares
All results are statistically significant (p < 0.001)
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Figure 6 Distributions and correlations of pairwise Fsr values based on SNP and SSR markers. (A-B) Histograms
show a unimodal distribution for SNPs (mean F5r = 0.016) and a broader spread for SSRs (mean Fsr
= 0.06), with blue dashed lines indicating mean values. (C) Correlation analyses between pairwise
SNP- and SSR-based F5r values, with a significant positive Mantel correlation (r= 0.431, p = 0.008).
Regression lines indicate the direction and strength of associations.
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contrast, Jost’s D showed a weaker and non-
significant correlation (r = 0.167, p = 0.161),
suggesting limited consistency between marker
types in capturing differentiation (Figure 7C).

DISCUSSION

This study highlights the contrasting but
complementary insights provided by SSRs and
genome-wide SNPs in assessing genetic diversity
of R. leprosula. SSRs revealed higher mean
number of alleles and mean heterozygosity
indices (A, Ho and Hy), these are consistent with
reports of other dipterocarps (Ng et al. 2004, Ng
et al. 2006, Ng et al. 2019, Ng et al. 2022, Ng et
al. 2024, Lee et al. 2006), reflecting their high
mutation rates and multi-allelic nature (Selkoe
& Toonen 2006, Putman & Carbone 2014).
In contrast, SNPs-based estimates provided
a complementary but more conservative
perspective on genetic diversity. Genome-wide
SNP expected heterozygosity was relatively
lower (Hy = 0.224 to 0.260) compared with SSR
estimates, reflecting the biallelic nature and
lower mutation rate of SNPs relative to SSRs.
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Observed heterozygosity (Ho = 0.328 to 0.397)
was consistently higher than expected, leading
to uniformly negative fis values. Although these
deviations were not statistically significant after
FDR correction, the consistent trend suggests
that SNP datasets may capture genome-wide
signals of outcrossing and balancing forces
that help maintain heterozygosity. In addition,
the estimates of nucleotide diversity (m = 0.008
to 0.010) for R. leprosula were relatively high,
consistent with previous report (Ng et al. 2021).
This reflects high standing genetic variation
among R. leprosula populations, suggesting that
the species retains considerable evolutionary
potential. Such genetic variation provides a
buffer against future environmental change
and emphasizes the importance of preserving
population connectivity to sustain adaptive
capacity. The nucleotide diversity was found to
be homogeneous across populations, with only
marginal differences between sites, implying a
relatively even distribution of standing genetic
variation at the genomic scale. The narrow
variance in nucleotide diversity further suggests
that no single R. leprosula population holds a
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disproportionately large share of the species’
genomic diversity, which has implications for
conservation strategies (Petit et al. 1998, Hoban
& Schlarbaum 2014, Willoughby et al. 2015).

Correlation analyses revealed weak and non-
significant associations between SSR- and SNP-
derived estimates of Hg, H, and Fis, confirming
that the two marker systems capture different
dimensions of diversity. This lack of concordance
is expected, given the high mutation rate, multi-
allelic nature and locus-specific informativeness
of SSRs, which make them particularly sensitive
to detecting rare alleles and local demographic
shifts (Hauser et al. 2011, Oliveira et al. 2006,
Fischer et al. 2017). Conversely, SNPs provide
broad genome-wide resolution but with reduced
perlocus variability. Such marker-dependent
differences have been documented in other
long-lived tree taxa, like Quercus (Reutimann
et al. 2020), suggesting the importance of
integrating marker systems rather than relying
on a single data type to infer population genetic
processes.

The differences between Isr and Jost’s D
estimates across markers further suggest the
importance of methodological context in
conservation genomics. Despite differences in
absolute values of population differentiation
(SSR Fsr = 0.061 vs SNP F = 0.027), both
datasets showed that the majority of variation
resided within populations, consistent with the
outcrossing reproductive system of R. leprosula
(Lee et al. 2000, Ng et al. 2004, Ng et al. 2006,
Dick et al. 2008, Crawford et al. 2012). The
higher Jost’s D for SSRs indicates greater allelic
turnover per locus, whereas SNPs, by averaging
across hundreds of thousands of loci, revealed
lower absolute divergence but provided greater
precision in delineating subtle structure not fully
resolved by SSRs (Jost 2008, Meirmans & Hedrick
2011, Morin et al. 2004, Allendorf et al. 2010).
These results suggest that while populations
are not strongly differentiated, they retain
measurable divergence that may represent local
adaptation or historical isolation. The relatively
low SNPs Fsr values imply substantial gene flow
among populations, which is advantageous for
maintaining genetic connectivity and reducing
risks of inbreeding depression. However,
the population differentiation detected by
SSRs highlights that regional genetic variants
could be at risk of excessive divergence if
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populations experience demographic decline,
habitat fragmentation or overexploitation.
Similar patterns have been reported in forest
trees, where SNPs often capture genome-wide
connectivity while SSRs detect finer-scale due to
higher mutation rates and multi-allelic nature
(Ellegren 2004, Ouborg et al. 2010, Wang et
al. 2018, Rossetto et al. 2019). These findings
underscore the complementary value of using
multiple marker systems in assessing genetic
structure for conservation management.

Both SSRs and SNPs consistently revealed
a genetic partitioning of R. leprosula into two
main clusters (K= 2) across Peninsular Malaysia,
suggesting a history of population divergence
likely influenced by geographic barriers such
as the Titiwangsa mountain range, combined
with limited dispersal and gene flow. Sub-
structuring within the southern cluster (Bl and
B2) further indicates finer-scale differentiation
that may reflect localized demographic histories
or restricted connectivity among populations.
The presence of admixed individuals suggests
that gene flow has occurred historically and may
still be ongoing, with important implications
for the distribution and maintenance of genetic
diversity. Admixed populations can function
as reservoirs of allelic variants and facilitate
connectivity across the landscape, whereas non-
admixed populations harbour unique allelic
combinations that contribute to the overall
genomic variation of the species. Notably, the low
SNP-based Fsr and high levels of allele sharing
imply that genome-wide connectivity remains
substantial, underscoring that conservation
measures should focus on preserving and
enhancing gene flow, rather than enforcing
strict separation of clusters (Allendorf et al.
2013).

The significantly positive s detected in
the RBelum population suggests localized
inbreeding, potentially reflecting restricted gene
flow and mating among related individuals. This
patternis consistentwith the geographicisolation
imposed by the construction of the Temenggor
Dam in 1974, which fragmented the formerly
continuous Belum-Temenggor rainforest into
discrete forest “islands” on higher ground.
Such anthropogenic fragmentation may reduce
effective population size, increases genetic
drift, and elevates the probability of biparental
inbreeding. While the signal of inbreeding is
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inferred from molecular data, direct validation
would require controlled breeding experiments
in which progeny of known relatedness are
assessed for fitness effects across environmental
conditions (Naito et al. 2005). If persistent,
inbreeding may reduce heterozygosity, limit
adaptive potential, and increase extinction risk
through inbreeding depression. Consequently,
the RBelum population should be prioritized for
detailed genomic monitoring and considered
for proactive interventions, including genetic
rescue to counteract ongoing loss of genetic
diversity (Frankham et al. 2017).

The complementary strengths of SSRs
and SNPs support their combined use in
conservation planning. SSRs remain highly
effective for individual assignment, parentage,
and long-term monitoring where historical
datasets already exist (Guichoux etal. 2011, Lee
et al. 2006, Selkoe & Toonen, 2006), while SNPs
are better suited for genome-wide analyses of
diversity, demographic inference, and detection
of adaptive variation (Allendorf et al. 2010,
Harrisson et al. 2014, Ng et al. 2021).

In practical terms, movement of reproductive
material should generally remain within clusters
to minimise maladaptation risk, though mixing
across nearby sub-clusters may be justified
where local populations are depleted (Lee
et al. 2017, Weeks et al. 2011). Future studies
may consider expanding SNP sampling across
distribution range populations and integrating
environmental data will further refine these
recommendations, ensuring that conservation
strategies for R. leprosula safeguard both its
adaptive potential and genetic potential.
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