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INTRODUCTION

The increasing demand for forest products has led 
to an increase in planted forest area worldwide. 
Global forest plantations are estimated to cover 
an area of 291 million ha, corresponding to 
7.2% of total forested area (FAO 2015). China 
has the largest area of planted forests worldwide, 
with 36% (69 million ha) of the country’s forests 
covered with forest plantations (Chinese Ministry 
of Forestry 2014). China has a long history of 
traditional practices in forestry. However, in the 
late 1980s, a large-scale afforestation programme 
was initiated to meet the commercial demand 
for high quality timber and other wood products 
(Wang et al. 2009). Within this framework, native 
forests were converted into monoculture tree 
plantations.
	 The successive planting of monoculture 
species at the same site often causes soil fertility to 
decline as the nutrients are largely utilised by fast-
growing species (Kooch et al. 2016). Many studies 
have reported major decline in soil fertility 
and timber yield due to successive rotations of 
monoculture plantations (Bi et al. 2007, Zhang et 
al. 2009, Selvaraj et al. 2017). The concentration 
of available soil phosphorus declined between the 
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first and second rotations of Acacia auriculiformis 
plantations in South Vietnam (Huong et al. 
2015). In Chinese fir (Cunninghamia lanceolata) 
plantations in southern China, soil carbon and 
nitrogen declined by 15.3 and 12.4% respectively 
between the second and third rotations (Zhang 
et al. 2004). 
	 Chinese fir is endemic to China, fast growing 
and is an evergreen coniferous tree cultivated 
for its high wood quality and commercial 
purposes such as for building construction 
and manufacturing furniture. The history of 
Chinese fir cultivation can be traced back to more 
than 1000 years (Wu 1984). Due to population 
increase, economic development and increasing 
demand for wood products, area under Chinese 
fir plantation rapidly increased to over 12 Mha in 
China (Chen et al. 2016). However, this increase 
was at the expense of natural forests, which were 
converted to monoculture and mixed plantations 
of Chinese fir. Chinese fir plantation covers 
60–80% of the total forest area in the southeast 
provinces of China (Bi et al. 2007). Usually, 
mature Chinese fir timber stands are harvested 
at the age of 25–30 years old by clear-cutting 
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followed by slash-and-burn (i.e. one rotation) 
but in recent times, timber is harvested after 
short rotation period (20–25 years) to meet the 
high demand. Current management practices 
include clear-cutting, slash burning and weeding 
twice a year in the first three years after planting 
followed by standard thinning practices (removal 
of alternate rows of branches and cutting of the 
crowns) at 10–13 years of age.
	 Only a few studies examined the effect of 
successive rotations of Chinese fir plantations on 
soil carbon, and they were limited to only three 
rotations of the species (Zhang et al. 2004, Zhang 
et al. 2009). Earlier investigations of soil nutrient 
dynamics in Chinese fir plantations were limited 
to chronosequence stand ages (Chen et al. 2013, 
Zhang et al. 2009, 2016, Zhou et al. 2015). This 
study investigated how soil nutrients are affected 
by the conversion of natural broadleaved forests 
to monoculture Chinese fir plantations over 
four rotations. The values were compared with 
soil nutrients of secondary natural broadleaved 
forest, which were used as baselines. 

MATERIALS AND METHODS

Study area

The study area is located in a small watershed in 
Wangtai Town, Nanping City, Fujian Province, 

China (Figure 1). The region has a subtropical 
monsoon climate, with mean annual temperature 
of 19.3 °C and relative humidity of 83%. The 
mean annual precipitation is 1699 mm, with 
most of it occurring in March till August. Mean 
annual evapotranspiration is 1413 mm. The 
altitude of the study area ranges from 150–250 m 
while the slope is 30–40°. The soil is red earth 
derived from granite, equivalent to Hapludult. 
Soil texture at the site ranges from sandy clay 
to clay loam. Soil profile is well developed with 
charcoal deposition in the organic layer due to 
slash-and-burn management practices. Thickness 
of the soil profile is over 1 m and is characterised 
by the accumulation of clay and iron oxides. Only 
a few old stands were protected, with plantations 
dominated by young (~ 8 years) and mid-rotation 
age (~ 12 years) classes. A first generation stand of 
Chinese fir planted in 1919 in Nanping (the study 
area) is the oldest stand of Chinese fir in China.

Chronosequence approach 

Sampling was performed in the year 2015. A 
total of 12 sites were sampled. They consisted 
of four rotation sites with one slash-and-burn 
cultivation cycle (first rotation) of stands with 
12, 21, 40 and 97 years old trees (which were 
the ages of the trees and consequently the times 
after the burning), four sites of a second rotation 

IR 12y: First rotation, 12-year-old stand

IR 21y: First rotation, 21-year-old stand

IR 40y: First rotation, 40-year-old stand

IR 97y: First rotation, 97-year-old stand

IIR 1y: Second rotation, 1-year-old stand

IIR 12y: Second rotation, 12-year-old stand

IIR 21y: Second rotation, 21-year-old stand

IIR 31y: Second rotation, 31-year-old stand

IIIR 13y: Third rotation, 13-year-old stand

IIIR 12y: Third rotation, 21-year-old stand

IVR 10y: Fourth rotation, 10-year-old stand

BLN-Broadleaved natural forest

China

Nanping
Wangtai

Fujian province

Figure 1    Location map of the study area
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(1, 12, 21 and 31 years old), two sites with three 
rotations (13 and 21 years old), and one site 
with four slash-and-burn cultivation rotation 
corresponding to Chinese fir of 10 years old. The 
selection of the sites occupied by trees of 12 (first, 
second and third rotations) and 10 years old 
(fourth rotation) was done to allow comparison 
of soil nutrients with similar period of time 
since the last burning, from one to four cycles 
of slash-and-burn, and a natural broadleaved 
forest. The average time that elapsed between 
each slash-and-burn cycle was 20 to 25 years. 
To minimise site variation, plantations having 
similar elevation, parent material, soil texture 
and topography were selected. The species that 
dominated the broadleaved forest were Maesa 
japonica, Woodwardia japonica, Angiopteris fokiensis, 
Miscanthus floridulus and Dicranopteris dichotoma. 
Main characteristics and topsoil properties of the 
selected sites are represented in Table 1.

Soil sampling 

Five sample plots (20 m × 20 m) were randomly 
selected from each of the 12 stands. In each plot, 
three pits were dug diagonally. From each pit, 
soil samples were collected at five depths of 0–20, 
20–40, 40–60, 60–80 and 80–100 cm. Soils from 
the three sampling pits were mixed thoroughly 
to form a single composite sample for each soil 
layer and were sealed in airtight bags. A total of 
300 mineral soil samples (five quadrats at the five 
specified depths) in 11 stands of different ages of 
Chinese fir and a secondary broadleaved forest 
(~ 40 years old) were collected and transferred 
to the laboratory for further analysis.

Chemical analysis

Soil samples were air dried, ground, sieved (< 2 mm) 
and analysed for soil chemical properties. The 
samples were sieved through 0.14-mm mesh and 
analysed for total nitrogen (N), total phosphorus 
(P) and total potassium (K). Three replicates 
from each soil layer were taken for the analysis. 
Total N was determined by dry combustion 
method using CN elemental analyser. Nitrate-
nitrogen (NO3

--N) and ammoniacal nitrogen 
(NH4

+-N) were determined by continuous 
segmented flow analyser while hydrolysable 
nitrogen was determined using alkaline hydrolysis 
diffusion method. Total P and total K contents 

were determined using molybdenum–antimony 
colorimetric method. P concentrations were 
measured colorimetrically while total K was 
measured using flame photometer. Available P 
was analysed by Bray and Kurtz (1945) method. 
Available K was extracted using 1.0 N ammonium 
acetate (Schollenberger & Simon 1945) and 
determined by flame photometer. 

Statistical analysis

Two-way factorial ANOVA was performed to 
test for significant differences in soil nutrients 
between stand ages and soil sampling depths. The 
data were analysed after testing for homogeneity 
of variance using Levene’s test. When constant 
variance was not satisfied, a log or square 
transformation was used. Multiple comparisons 
of the means of different soil nutrients between 
stand ages, rotations and soil sampling depths 
were performed using Tukey’s HSD test (p = 
0.05). All statistical analyses were performed 
using SPSS 17.0 software.
 
RESULTS

Soil nutrient dynamics in successive rotations

Successive planting of Chinese fir caused 
significant decline in the concentrations of 
NH4

+-N, total P, available P and available K in 
the surface soil layer (0–20 cm) from the first 
to fourth rotation (Table 2). In contrast, the 
amount of these nutrients increased from the 
third to fourth rotation in the deeper soil layers 
(> 40 cm). 

Characteristics of soil nutrients of stands of 
different ages	

Concentration of soil nutrients decreased 
from 21- to 40-year-old stand. Mean difference 
in concentrations of total N (0.54 g kg-1), 
hydrolysable N (51.42 mg g-1), NO3

--N (17.58 mg g-1),  
NH4

+-N (3.88 mg g-1), total P (0.19 g kg-1), and 
available K (20.95 mg g-1) increased from 40- to 
97-year-old stand at 1-m depth. The 10-year-
old stand of fourth rotation had the lowest 
concentration of NO3

--N (1.34 mg g-1), NH4
+-N 

(3.15 mg g-1), total P (0.24 g kg-1), available P 
(4.43 mg g-1), total K (35.79 g kg-1), and available 
K (61.53 mg g-1) in the topsoil (0–20 cm) (Table 2).
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Depth distribution of soil nutrients 

Surface soil (0–20 cm) accumulated maximum 
soil nutrients in stands of all ages, except for 
available P. Concentrations of total P, total K, 
hydrolysable N and available K decreased with 
increasing soil depth. There was significant 
(p < 0.05) and constant decrease in total K 
concentration with decrease in soil depth 
(Table 2). Except for total N, soil depth and its 
interaction with stand age had significant effect 
on the concentration of soil nutrients in all three 
rotations (Table 3). 

Conversion of natural forest to monoculture 
plantation

The conversion of natural broadleaved forest 
to a monoculture plantation affected the 
concentration of total and available forms of 
N, P and K. Successive rotations of Chinese fir 
plantations caused a decline (fourth rotation) 
in total N (22.5%), NO3

--N (66.5%), NH4
+-N 

(24.2%), hydrolysable N (22.4%), total P 
(43.5%), available P (59.9%), total K (50.5%) 
and available K (35.2%) at the total depth of  
1 m when compared with the broadleaved forest.

Table 3 	 Comparison of effects of stand age and soil depth on soil nutrients in Chinese fir stands including 
all stand ages at given the rotation using two-way ANOVA

Soil nutrient Stand age Soil depth Soil depth × stand age

F p F p F p r2

First rotation

Total N 14.14 < 0.05 66.22 < 0.05 1.93 < 0.05 0.805

NO3
--N 65.70 < 0.05 16.29 < 0.05 5.72 < 0.05 0.648

NH4
+-N 8.54 < 0.05 18.32 < 0.05 8.46 < 0.05 0.527

Hydrolysable N 21.96 < 0.05 135.82 < 0.05 2.89 0.001 0.782

Total P 38.99 < 0.05 365.38 < 0.05 5.21 < 0.05 0.901

Available P 7.49 < 0.05 17.63 < 0.05 2.93 0.001 0.416

Total K 6105.9 < 0.05 10,686.2 < 0.05 60.54 < 0.05 0.997

Available K 96.21 < 0.05 641.38 < 0.05 15.09 < 0.05 0.944

Second rotation

Total N 17.25 < 0.05 123.89 < 0.05 1.33 ns  0.216 ns 0.876 ns

NO3
--N 2.49 ns 0.06 ns 23.99 < 0.05 2.43 0.006 0.424

NH4
+-N 17.66 < 0.05 40.02 < 0.05 2.23 0.01 0.571

Hydrolysable N 19.36 < 0.05 351.31 < 0.05 2.29 0.01 0.892

Total P 61.72 < 0.05 1323.02 < 0.05 11.22 < 0.05 0.969

Available P 17.57 < 0.05 8.83 < 0.05 3.97 < 0.05 0.430

Total K 12876.1 < 0.05 15,044.5 < 0.05 164.4 < 0.05 0.998

Available K 60.76 < 0.05 519.55 < 0.05 9.66 < 0.05 0.930

Third rotation

Total N 4.69  0.03 98.71 < 0.05 0.24 ns 0.912 ns 0.909 ns

NO3
--N 125.5 < 0.05 8.01 < 0.05 9.77 < 0.05 0.686

NH4
+-N 109.52 < 0.05 32.01 < 0.05 4.63 0.002 0.740

Hydrolysable N 97.45 < 0.05 109.61 < 0.05 3.04 0.021 0.835

Total P 103.59 < 0.05 550.37 < 0.05 5.097 0.001 0.959

Available P 273.67 < 0.05 9.93 < 0.05 2.65 0.03 0.783

Total K 4989.02 < 0.05 4544.6 < 0.05 107.16 < 0.05 0.996

Available K 1.62 ns 0.205 ns 146.50 < 0.05 2.87 0.02 0.869

Results of the fourth generation cannot be compared due to the absence of multiple stand age; ns indicates non-significant 
difference between stand ages or soil depths (p = 0.05)
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DISCUSSION

Effect of successive rotation on soil nutrients

Successive rotation of Chinese fir monoculture 
plantations caused concentrations of soil nutrients 
in the top soil (0–20 cm) to decline, as reported 
by Xi et al. (2009), Ma et al. (2007) and Wei et 
al. (2012). Decline in soil nutrients causes soil 
fertility to decline. Stands in the fourth rotation 
accumulated higher amounts of nutrients in 
the deeper layers (> 40 cm) than surface layers 
(0–40 cm) when compared with stands in the 
third rotation, except for hydrolysable N and 
NO3

--N. This indicated that more rotations might 
not necessarily cause soil nutrients to decline in 
the deeper soil layers (up to 1 m). In Chinese 
fir plantations, subsurface soil layers had higher 
nutrient concentration than surface layers even 
at the fourth rotation. This could be attributed 
to the exposure of the surface layer as a result of 
repeated slash-and-burn treatment resulting in 
the removal of ground vegetation and organic 
matter, causing loss of soil nutrients. Nutrients 
from the surface layers (0–40 cm) are also taken 
up by the Chinese fir during their early stage 
of development. In contrast, large dry matter 
root systems from previous rotations remain 
in the deeper soil layer (because they were not 
uprooted), which serve as nutrient-rich stores 
(Wang et al. 2013).

Dynamics of soil nutrients at different stand 
ages

In the first rotation, availability of total K and 
different forms of N (NO3

--N and hydrolysable 
N) and P increased from 12- to 21-year-old stands 
but then declined in 40-year-old stand. Our 
results suggested that cutting cycles of Chinese 
fir should not be implemented in stands of  
< 20 years of age. Since we did not have access 
to stands of 22–29 years of age, we could not 
establish an exact age for optimal harvesting 
after 21-years based on changes in soil nutrient 
levels. However, clear-harvesting should be 
delayed a further ~5 years at sites where Chinese 
fir plantations are continuously cultivated with 
clear-cutting at ~20–25 years (Ma et al. 2007, 
Tian et al. 2011). Moreover, our study showed 
that the 97-year-old stand accumulated more soil 
nutrients (such as total N, NO3

--N, hydrolysable 
N, total P and available K) than the 40-year-old 

stand. This difference is likely due to the fact that 
old growth plantations sequester more nutrients 
through more litter input and understorey 
vegetation (Zhou et al. 2006, Luyssaert et al. 
2008). Compared with 12-year-old stand, the total 
and inorganic forms of N were lower in 1-year-old 
stand, where the site was clear-cut and slash-and-
burned. This phenomenon occurred because 
stem and wood removal during clear-cutting and 
controlled slash burning significantly reduced 
nitrogen levels due to higher temperatures (Guo 
et al. 2010). 

Nutrient dynamics at different soil depths

Soil depth and stand age significantly affected 
soil nutrients in the first three rotations, except 
for total N in the second and third rotations. 
We also recorded significant decline in soil 
nutrients with increasing soil depth in stands 
of all ages, supporting the results of Groppo 
et al. (2015) and Breulmann et al. (2016) who 
documented this phenomenon regardless of 
plantation species, landuse and vegetation type. 
This decline in soil nutrient concentration is 
due to deposition of large amount of plant litter 
and its decomposition by soil fauna, resulting in 
more soil nutrients accumulating in the top soil 
compared with lower soil layers. 

Comparison of the broadleaved forest with 
monoculture plantation

Total and available forms of soil nutrients were 
higher in the broadleaved forest compared 
with all monoculture Chinese fir stands. This 
difference was due to more biomass accumulating 
in the soil from the understorey vegetation and 
broadleaved litter, which was also suggested 
by Chen et al. (2004) and Wan et al. (2013). 
Cultivation of selected broadleaved species 
reduces alleo-chemicals levels (Xia et al. 2016). 
Thus, the presence of broadleaved stands within 
Chinese fir monoculture could help improve soil 
properties and enhance wood production.

Recommendations and perspectives for 
forest management

Understanding how soil nutrients are affected 
by current landuse practices is useful to help 
forest managers design appropriate conservation 
strategies to enhance forest productivity, maintain 
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of soil nutrients in Chinese fir plantations could 
be sustained by increasing the stand age from  
25 years but not more than 30 years. Stands 
should be grown for approximately 5 more 
years at sites that are currently managed by 
clear-harvesting at ~20–25 years (Ma et al. 2007, 
Tian et al. 2011). Thus, we suggest that current 
management practices should be revised to 
only two rotations and to harvest trees only 
between 25 and 30 years of age. Since soil fertility 
declined during forest conversion from natural 
broadleaved forest to Chinese fir plantations, 
we recommend mixing conifer plantations with 
selected broadleaved species for the effective 
sustainable management and to maintain soil 
fertility, which would generate both economic 
and environmental benefits to the plantation 
industry. 
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