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INTRODUCTION

Mangrove forests protect the coastal land against 
destruction of tsunamis and storms. Mangrove 
forests also provide habitat for various aquatic 
life forms and function as filter, which improves 
the quality of water. Total area of mangrove forest 
was approximately 2% (645,852 ha) of the total 
land area in Malaysia in 1994 (Azahar & Shah 
2003). However, the area of mangrove forest in 
Malaysia has been gradually diminishing, and in 
2014, has reduced to approximately 580,000 ha 
(Roslan & Shah 2014). 
	 Mangrove forests thrive near coastal areas, 
which function as carbon pools (Patil et al. 2014). 
The soil of mangrove forest stores significant 
amount of carbon compared with other types 
of forest given its high sediment concentration 
(Tateda et al. 2005, Patil et al. 2014). Average 
carbon storage in mangrove soil is five times 
larger than in other types of forest soil (Kauffman 
& Donato 2012). Thus, it is crucial to study the 
biomass of mangrove trees in order to describe 
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the changes of climate patterns at the regional 
and global scales.
	 Application of remote sensing is also crucial 
to obtain pertinent information of landuse cover 
and landuse change over extensive coverage 
areas. There are several methods to estimate 
stand biomass using remote sensing data. 
Normalised difference vegetation index (NDVI) 
is one of the vegetation indices which assess 
and monitor photosynthetically active biomass 
of plant canopies (Tucker 1979, Gitelson et al. 
1996, Sweet et al. 2015). The NDVI utilises two 
wavelength channels from the optical satellite 
images, namely, red infrared and near infrared 
(NIR) to distinguish vegetation from other 
types of land cover. It is particularly useful for 
vegetation studies because the leaf surface, 
canopy cover and chlorophyll concentration are 
significantly sensitive towards the wavelength 
channels of red and NIR (Tucker 1979, Saliola 
2014).



Journal of Tropical Forest Science 30(2): 224–233 (2018)	 Muhd-Ekhzarizal ME et al.

225© Forest Research Institute Malaysia

	 The combination of field-measured and 
remote sensing data assesses aboveground 
biomass (AGB), carbon stock and their changes 
over extensive coverage areas (Kiyono et al. 2011). 
Similarly, the combination of aerial photography 
and lower resolution satellite images such as 
Landsat and Systeme Probatoire d’Observation 
de la Terre 5 (SPOT-5) are also essential in the 
assessment and mapping of mangrove forests 
(Heumann 2011). However, higher resolution 
image is preferred when it comes to mapping 
and monitoring over small coverage area. 
Nonetheless, the utilisation of remotely-sensed 
data alone could be rather limited without the 
procurement of field data.
	 Therefore, this study investigated the 
usefulness of combining vegetation indices 
derived from SPOT-5 images and field sampling 
data in assessing AGB and carbon stocks of the 
Matang Mangrove Forest Reserve (MMFR), 
Perak. The improvement in the relationship 
between field sampling and satellite imagery 
using multilinear regression method is also 
discussed in this paper.

MATERIALS AND METHODS

Study area

The study was conducted at Kuala Sepetang 
(South) Forest Reserve, which is part of the 
MMFR (Figure 1). The total area of MMFR 
is about 41,000 ha. However, this study only 
considered 9884 ha of the MMFR. The forest 
was gazetted as a permanent forest reserve in 
1906 and it is managed mainly for charcoal 
production. Located at the north-west coast of 
Peninsular Malaysia, MMFR is under intensive 
scientific management and considered as the 
best managed mangrove forest in the world 
(Okamura et al. 2010).
	 The main tree species found in MMFR are 
Rhizophora apiculata (locally known as bakau 
minyak), Rhizophora mucronata (bakau kurap) 
and Bruguiera parviflora (lenggadai) (Hamdan 
et al. 2014). Small channels usually bring in high 
quantities of B. parviflora propagules. Being an 
opportunist, this species rapidly takes root in 
clear-felled areas, which impairs the growth of 
Rhizophora species. Another Bruguiera species 
that mainly moves seawards is B. cylindrical 
(berus) but is considered inferior to Rhizophora 
species as raw material for charcoal production. 
Therefore, extensive areas having this species 

remain unexploited. Based on the ecological 
settings, the MMFR is classified into four main 
species, which are (1) Avicennia-Sonneratia, (2) 
Rhizophora, (3) B. cylindrica and (4) B. parviflora 
(Roslan & Shah 2014).

Satellite data

This study utilised the SPOT-5 satellite images, 
which were acquired on 13 December 2014. 
These images were supplied by the Malaysian 
Remote Sensing Agency. These images comprised 
four multispectral bands and one panchromatic 
band, which had spatial resolution of 10 and  
5 m respectively. The four bands in multispectral 
were green (band 1, wavelength 0.51–0.59 μm), 
red (band 2, 0.61–0.68 μm), NIR (band 3, 
0.78–0.89 μm) and short-wave infrared (band 4, 
1.58–1.75 μm).

Field data 

Field survey for the sample plots was conducted 
between October 2014 and March 2015. The 
location of the sample plots was restricted to 
easily accessible areas based on simple random 
sampling. Tree parameters such as diameter at 
breast height (DBH) and height were recorded 
individually. All trees with DBH ≥ 1 cm in the 
sample plot were measured using diameter tape 
at 30 cm above the highest prop roots. The 
coordinates for each plot and year of felling 
operation were also recorded. Unidentified leaf 
samples in the field survey were identified in the 
herbarium. Tree inventory and sampling were 
conducted in a sample plot of 0.1 ha. Radius of 
the circular plot was 17.84 m (Figure 2). The 
coordinate centre of the plot was determined 
using Garmin GPS device. This study established 
150 sample plots and the total area of inventoried 
plots was 15 ha.

Estimation of plot-based AGB 

Species-specific allometric equations were 
applied to estimate the total AGB (Komiyama 
et al. 2005). Using the Global Wood Density 
Database (Chave et al. 2009, Zanne et al. 2009) 
density values of oven-dry wood for all species in 
the mangrove forest is provided in Table 1. Study 
by Mohd Hasmadi et al. (2015) was also used as 
reference. All tree species were identified so that 
the species-specific wood density can be applied 
for accurate AGB estimation. 
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Figure 1     Location of the study area in Matang Mangrove Forest Reserve (MMFR), Perak

Figure 2     Layout design of the sampling plot
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	 The estimation of AGB was based on DBH 
and wood density which were measured at the 
field. The equation for AGB can be expressed as 
follows:

	 AGB = 0.251ρ × D2.46	 (1)

where AGB = aboveground biomass (kg),  
ρ = wood density (g cm-3) and D = DBH (cm).

Pre-processing of image

The pre-processing phase,  namely geo-
re ferenc ing ,  a tmospher ic  cor rec t ion , 
radiometric correction, map enhancement, 
band combination and spatial filtering, was 
performed on the SPOT-5 images. The images 
were then geometrically registered to the Kertau 
RSO Malaya projection system. The reregistered 
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images were subsequently pan-sharpened to 
obtain a higher resolution (Zhang & Mishra 
2012). Pan-sharpening was performed by 
merging panchromatic image multispectral 
images to create a single high-resolution colour 
images, producing multispectral images with 
higher resolution pixels. The pixel resolution was 
improved from 10 to 5 m. Effects of atmospheric 
and radiometric were removed from the image 
to produce surface reflectance values for an 
improved image. This process involved the 
conversion of digital number values of SPOT-5 
images into reflectance values.

Digital image processing

This study correlated certain variables from 
vegetation indices derived from SPOT-5 image 
with the measured AGB. These vegetation indices 
were (1) NDVI, (2) soil-adjusted vegetation index 
(SAVI), (3) green NDVI (GNDVI), and (4) global 
environment monitoring index–NDVI (GEMI–
NDVI). The equations for these vegetation 
indices are provided in Table 2. All image indices 
were used for regression analysis.

Statistical analysis

Prior to the model development, correlations 
between vegetation indices and AGB were 
developed using simple Pearson correlation 
coefficient (r) and multilinear regression model. 
The following simple linear regression was used:

	 Y = β0 + β1X	 (2) 

Table 1	 Wood density for each species in mangrove 
forest according to the Global Wood Density 
Database

Species Wood density 
(g cm-3)

Rhizophora apiculata 0.843
Rhizophora mucronata 0.814
Bruguiera parviflora 0.772
Bruguiera gymnorrhiza 0.764
Avicennia alba 0.587
Sonneratia alba 0.509
Xylocarpus granatum 0.851
Sonneratia ovata 0.370
Ceriops tagal 0.837

Sources: Chave et al. (2009), Zanne et al. (2009)

Table 2	 Equations for selected vegetation indices

Equation for vegetation index Source

PIR – PRNDVI =
PIR + PR

Rouse et al. 
(1974)

SAVI = (1 + L)
(PIR – PR)

(PIR + PR + L)

Huete (1988)

GNDVI =
PNIR – Pgreen

PNIR – Pgreen

Gitelson et al. 
(1996)

GEMI–NDVI = n(1 – 0.25n)
(PR – 0.125)

(1 – PR)

Pinty and 
Verstraete 
(1992)

NDVI = normalised difference vegetation indices, SAVI 
= soil-adjusted vegetation indices, GNDVI = green NDVI, 
GEMI–NDVI = global environment monitoring index–
NDVI; P = reflectance; wavelength channels: green, red (R), 
infrared (IR) and near infrared (NIR)

where β0 = intercept, β1 = value of slope line and 
X = value of independent variable. About two 
thirds of the dataset (100 plots) were selected for 
model development while one third (50 plots), 
for model validation. Coefficient of correlation 
(r2) between the predictor and the measured 
AGB determines the strength of the regression 
model to represent two variables (Lawrence & 
Ripple 1998). An r2 value of 1.0 signifies perfect 
fit of the data with the model. 
	 A the multilinear regression, which was a 
combination between two or more independent 
variables, was applied in this study. Such 
combination typically provides high r2 value, 
as reaffirmed by majority of previous studies 
(Hamdan et al. 2014a). Therefore, this technique 
has been adopted in this study to obtain  
improved r2 values for the estimates. A multilinear 
regression model generally can be as expressed 
as follows:

	 Y = β0 + β1X1 + β2X2 + ... + β 1 – nX1 – n + e	 (3) 

where β0 = intercept, β1–n = value of slope line for 
variable 1 – n and X1 – n = value of independent 
variable 1 – n. 

Model validation and accuracy assessment
 
For model validation, the remaining 50 plots 
were used to measure the predictive accuracy 
of the estimation models. The error between 
predicted and measured AGB was calculated 
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using vertical RMSE, as shown in the following 
equation:

	 RMSE = 	 (4)

where N = number of check plots, Yi = measured 
AGB at check plot i and i = derived/predicted 
AGB at position i.

Estimation of AGB and C stock in study area

The estimated AGB map was produced based on 
the best prediction function derived from the 
regressions. Each relationship between the two 
variables produced different values of r2. The 
function that had the highest value of r2 was used 
to estimate AGB in the entire study area. 

RESULTS AND DISCUSSION

Summary of sample plots and estimated AGB

The DBH and height of tree samples for each 
species and AGB estimated from 150 plots are 
summarised in Table 3. All plots recorded a total 
of 15,142 trees where R. apiculata was dominant 
with 13,756 trees. DBH of the trees within all 
sample plots ranged between 1.5 and 42.5 cm. 

AGB varied between 24.35 and 462.40 Mg ha-1. 
The total AGB estimated was 25,339.80 Mg ha-1. 
The variation of the AGB in 150 plots is presented 
in Figure 3.
	 Table 4 summarises the results of total number 
of trees and total AGB, which were recorded 
and classified per diameter class. The mean 
height and DBH were calculated according to 
diameter class as well. Based on data from all 
sample plots, total AGB for the DBH class of 
10–19 cm constituted more than 1258.55 Mg ha-1. 
This DBH class recorded the highest number of 
trees (8235). DBH class 40–49 cm recorded the 
lowest number of trees (2) and total AGB value  
(3.43 Mg ha-1). 

Development of AGB prediction models

Conventionally, vegetation indices are utilised as 
predictors because of the relationship between 
spectral information catered by optical remote 
sensing data and vegetation biomass (Roy et 
al. 2010). The derived NDVI, SAVI, GNDVI, 
and GEMI–NDVI are illustrated in Figure 4. 
The scatterplots that have been generated 
from the linear regression analysis as shown in 
Figure 5, indicated the relationship between 
vegetation indices and measured AGB. The 
results demonstrated that NDVI attained the 
highest r2 value (0.60) followed by GEMI–NDVI 

Table 3	 Average DBH and height for each species and AGB estimated from 150 plots

Species Average 
of DBH 

(cm)

Average of 
height (m)

DBH 
(cm)

Height 
(m)

Count
(Total: 15,142) 

Min Max Min Max

R. apiculata 13.70 11.26 1.50 42.50 2.50 19.00 13,756

R. mucronata 15.80 12.24 5.50 33.60 6.00 18.00 335

B. parviflora 11.40 9.71 5.20 33.60 4.00 18.00 873

B. gymnorrhiza 13.60 11.13 5.90 39.80 5.00 20.00 135

A. alba 14.24 11.56 7.50 40.00 6.00 19.00 18

S. alba 11.20 10.60 8.90 16.40 8.00 14.00 5

X. granatum 19.56 13.05 14.40 25.00 11.00 15.00 11

S. ovata 16.33 11.25 8.00 23.10 9.00 14.00 8

C. tagal 8.80 9.00 8.80 - 9.00 - 1
Estimation of total AGB from 150 sample plots

Sample plot Minimum
(Mg ha-1)

Maximum
(Mg ha-1)

Average
(Mg ha-1)

Total
(Mg ha-1)

150 24.35 462.40 168.93 25339.80

	 DBH = diameter at breast height, AGB = aboveground biomass
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(0.51) (Table 5). There were no significant 
relationship between AGB and SAVI or GNDVI 
with the r2 values obtained < 0.10. Therefore, 
NDVI and GEMI–NDVI were selected and 
combined as a single independent variable using 
multilinear regression to produce estimates of 
AGB for the entire study area.

Multilinear regression analysis

The measured AGB (between 92.12 and  
307.78 Mg ha-1) was utilised to validate the 
regression model. Figure 6 shows the perfect 
agreement between the measured and predicted 
AGB from the multilinear analysis. Table 6 
summarises the prediction function that has 
been derived from the combination of NDVI and 
GEMI–NDVI. It is notable that the combination 
has slightly increased the r2 value, and reduced 
the RMSE compared with the estimation 
models produced from single vegetation index. 

This implied that the combination of several 
independent variables was able to increase the 
accuracy of AGB estimates. 
	 In order to further reduce the RMSE, AGB 
was divided into three intervals, namely, < 150,  
150–300 and > 300 Mg ha-1 (Table 7). With 
that, the values of RMSE could be determined 
according to the AGB interval. RMSE was lowest 
(± 43.58 Mg ha-1) when AGB ranged between 
150 and 300 Mg ha-1 and as AGB exceeded  
300 Mg ha-1, RMSE increased (± 167.83 Mg ha-1). 
RMSE was low when AGB ranged between 150  
and 300  Mg  ha-1 due to the high number 
of plots (Hamdan et al. 2015). Nonetheless,  
overall RMSE was ± 107.26 Mg ha-1 when  
all validation plots were integrated. Study 
by Goh et al. (2014) found that when ALOS 
PALSAR and SPOT-5 images were combined 
for estimation of AGB, the RMSE values were 
between 150 and 152 Mg ha-1 respectively. 
Thus, the overall RMSE obtained in this 

Figure 3      Variation of aboveground biomass (AGB) of all sample plots

Table 4	 Summary of measurements according to diameter class

DBH class (cm) 1–9 10–19 20–29 30–39 40–49

Number of trees 4656 8235 2175 74 2

Total AGB (Mg-1) 180.00 1258.55 999.79 86.79 3.43

Mean height (m) 15.03 18.07 22.07 22.92 32.00

Mean DBH (m) 8.19 14.12 22.60 33.21 41.25

	 DBH = diameter at breast height, AGB = aboveground biomass
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present study was acceptable. Using NDVI 
and SAVI and the similar model, Hamdan et 
al. (2014a) obtained RMSE = 43.77 Mg ha-1  
(r2 = 0.59) and 68.21 Mg ha-1 (r2 = 0.01) 
respectively.

Aboveground biomass distribution

The model developed from the multilinear 
regression analysis provided the highest rate of 
accuracy. The combination of estimated NDVI 
and GEMI–NDVI was applied to the selected site 
in MMFR with a total area of approximately 9884 
ha. The minimum and maximum values of the 

AGB were 33.65 and 437.46 Mg ha-1 respectively. 
The overall AGB recorded approximately  
1.3 million Mg ha-1. Subsequently, for the entire 
MMFR, with a total area of approximately  
41,000 ha, the overall AGB was 5.3 million Mg. 

CONCLUSIONS

The linear regression is a commonly used 
method to estimate AGB in most studies. Since 
the study has derived four vegetation indices, 
the multilinear correlation, which can combine 
more than two variables in a single prediction 
model, was chosen for the AGB prediction in 

Figure 4	 Images of four vegetation indices for the selected study area; NDVI = normalised difference 
vegetation indices, SAVI = soil-adjusted vegetation indices, GEMI–NDVI = global environment 
monitoring index–NDVI and GNDVI = green NDVI
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Figure 5	 Satterplots of correlations between aboveground biomass (AGB) and vegetation indices: (a) SAVI = 
soil-adjusted vegetation indices, (b) NDVI = normalised difference vegetation indices, (c) GNDVI 
= green NDVI and (d) GEMI–NDVI = global environment monitoring index–NDVI

Table 5	 Summary of simple linear regression models using single independent variable

Vegetation index Model r r2 Adjusted r2 Residual error (± Mg ha-1)

NDVI y = 973.87x – 190.62 0.78 0.60 0.60 54.62

GEMI–NDVI y =2491.00x – 1789.50 0.71 0.51 0.51 60.47

SAVI y = 183.31x – 7.51 0.23 0.05 0.04 84.02

GNDVI y = -266.83x + 268.11 0.30 0.09 0.08 82.43

SAVI = soil-adjusted vegetation indices, (b) NDVI = normalised difference vegetation indices, (c) GNDVI = green NDVI 
and (d) GEMI–NDVI = global environment monitoring index–NDVI

Figure 6     Scatterplot showing perfect agreement between measured and estimated aboveground biomass (AGB) 
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the entire study area. The developed model in 
this study provided the best estimation with r2 
value of 0.61. The range of the AGB estimated 
was between 33.65 and 437.46 Mg ha-1 with 
an average of 133.97 Mg ha-1. The RMSE for 
the estimates was ±107.26 Mg ha-1. A spatially 
distributed map of AGB within the study area 
has been produced and from the distribution, it 
was estimated that total AGB in Kuala Sepetang 
(South) that has an extent of 9884 ha was about 
2,384,000 Mg. 
	 The model was validated using independent 
validation plots and the predicted AGB was within 
agreement with the measured AGB, which was 
accurate at about 73%. Although there were some 
limitations produced by the study, the results 
were valid for the specific mangrove forest in the 
study area. Conclusively, the model developed by 
this study can be duplicated for estimations of 
AGB in similar mangrove ecosystem in Malaysia. 
The understanding on the forest biomass and 
carbon issues is one of the matters in efficient 
management practices. 
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