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Accurate estimation of above-ground biomass (AGB) is essential for assessing carbon stocks and
forming climate change mitigation strategies, especially in tropical ecosystems. This study developed
site-specific allometric equations for estimating above-ground biomass in community-managed
secondary miombo forests of the Lake Chilwa Basin, Malawi. Using destructive sampling of 58 trees
across multiple plots, diameter at breast height (D, 3), total height (H,), and crown diameter (Cq) were
measured. Trees were oven-dried in parts (trunk, branches, foliage), and their dry weights summed.
The relationship between dry weight and dendrometric variables (D;3, H,, Cq) was analysed using
Nonlinear Least Squares regression to derive four models with different variable combinations. Model
performance was evaluated using adjusted R%, RMSE, Furnival Index, PRESS, and absolute mean
deviation (AMD). The most robust model (Y;;), incorporating D, s, H,, and Cq, explained 88.9% of
biomass variability. Comparisons with commonly used generalised models revealed significant biases
(P <0.01), due to site-specific factors such as species composition and tree size range. While some
regional models performed better, their applicability was still limited. These findings underscore the
need for localised models to improve biomass estimation accuracy. The developed models provide
practical tools for forest managers in the Lake Chilwa basin and similar ecological zones.
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INTRODUCTION

Accurate estimation of above-ground biomass
(AGB) is fundamental for quantifying forest
carbon stocks, understanding carbon dynamics,
and supporting climate change mitigation
policies, particularly in tropical and sub-
tropical forest ecosystems (Brahma et al. 2021).
Secondary forests—defined as mnaturally or
assisted-regenerating vegetation on previously
disturbed or cleared land—are increasingly
important for sequestering atmospheric carbon,
restoring biodiversity, and sustaining ecosystem
functions (Chazdon 2014). These forests
frequently occupy abandoned agricultural
land or degraded landscapes and are central to
contemporary ecological restoration efforts.

In sub-Saharan Africa, many forested
landscapes are managed through decentralised
systems. Community-managed forests, often
referred to as Village Forest Areas (VFAs),
involve local communities in the stewardship
of forest resources, including their protection,
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restoration, and sustainable use (FAO 2016).
These participatory governance models have
shown promise in enhancing forest condition
while supporting rural livelihoods.

The Lake Chilwa Basin, located in
southeastern Malawi and extending into
western Mozambique, is an ecologically and
socio-economically significant transboundary
landscape. The basin includes Lake Chilwa,
Malawi’s second-largest lake and a designated
Ramsar site of international importance due to
its biodiversity, extensive wetlands, and critical
role as a habitat for migratory birds. The basin
supports diverse livelihoods through agriculture,
fishing, and forest product use, and is a priority
area for sustainable development and regional
environmental cooperation.

Surrounding the basin are extensive Miombo
woodlands, a tropical deciduous forest type
dominated by species in the genera Brachystegia,
Julbernardia, and Isoberlinia (Frost 1996). These
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woodlands span much of southern and eastern
Africa and are vital for fuelwood, timber, non-
timber forest products, and carbon storage. In
both Malawi and Mozambique, community-
managed secondary Miombo forests are playing
a growing role in climate adaptation, land
restoration, and rural energy provision.

Despite their importance, estimating biomass
in these landscapes remains challenging due to
ecological heterogeneity, variable disturbance
histories, and the limited availability of site-
specific data. Widely used allometric models,
such as those developed by Brown (1997) and
Chave et al. (2005), were primarily based on
data from mature, undisturbed tropical forests
with large trees. When applied to secondary or
degraded forests, these models often yield biased
estimates (Basuki et al. 2009, Beets et al. 2012,
Kachamba et al. 2016). Additionally, research
has demonstrated that allometric relationships
vary significantly with forest structure, species
composition, and management history (Cairns
et al. 2003, Clark et al. 2001, Kebede &
Soromessa 2018), highlighting the limitations of
generalised models.

In Malawi, existing biomass studies have
largely focused on primary Miombo woodlands,
with little attention given to secondary forests
under community management. No published
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studies to date have developed biomass models
specifically for secondary Miombo forests in the
transboundary Lake Chilwa Basin, despite the
growing importance of such data for REDD+
programs and carbon accounting initiatives
(Kamaljit et al. 2023).

This study addresses this knowledge gap by
developing and validating site-specific allometric
equations for estimating above-ground biomass
in community-managed secondary Miombo
forests within the Lake Chilwa Basin. The
models were derived using locally collected
dendrometric data, and their performance was
evaluated against existing generalised equations.
The results aim to improve biomass estimation
accuracy and inform forest management, carbon
assessments, and climate finance initiatives in
similar ecological zones.

METHODOLOGY
Study area and study sites

The study was conducted in the Lake Chilwa
Basin, a transboundary landscape situated in
southeastern Malawi and western Mozambique,
covering approximately 8350 km?, with 2700 km?
area falling within Mozambique (Sagona 2013)
(Figure 1). Elevations range from 627 m to 1050
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Map of the study area in Malawi and specific study sites (VFAs)
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m above sea level, and the region experiences
a subtropical climate with mean annual rainfall
between 800 mm and 1200 mm (Zomba District
Assembly 2009).

The study area is primarily savannah, turning
into moderate wetlands towards Lake Chilwa.
The vegetation is dominated by Miombo
woodland, composed primarily of tree genera
such as Brachystegia, Julbernardia, and Isoberlinia
(Frost 1996). These woodlands are characterised
by deciduous tree species and a pronounced dry
season. Study sites were located in secondary
Miombo forests, specifically within community-
managed areas known locally as Village Forest
Areas (VFAs), which are governed by local
communities. These forests have undergone
various degrees of degradation and natural
regeneration.

Forest inventory

Initially, a pilot inventory was conducted. The
initial inventory involved the establishment
and measurement of 10 semi-permanent
sample plots, each measuring 10 m x 10 m,
strategically placed across representative forest
areas within the basin. The primary purpose of
this preliminary survey was to collect baseline
data on tree diameter distribution and other key
forest characteristics to estimate the required
sample size for the full inventory.

Specifically, the coefficient of variation in
diameter class frequencies from these 10 plots was
used in a standard sample size formula (Pearson
etal. 2005) to calculate the total number of plots
needed to achieve a 95% confidence level with
10% precision in estimating the diameter class
distribution.

Final inventory followed the pilot inventory.
In contrast, the final inventory involved the
full deployment of this statistically determined
number of plots across the basin. These plots
were also semi-permanent and followed the
same 10 m x 10 m square layout, but they were
more randomly distributed over a larger area to
capture the full spatial and structural variability
of the forests. The final inventory provided
a more robust dataset for analysing forest
structure, assessing resource conditions, and
informing destructive sampling (collecting data
for biomass models), which followed.

All trees in each plot, were assessed for
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diameter at breast height (D, 3 = 1.3 m from the
ground); height (H,); and crown diameter (Cq).
Crown diameter was measured in meters (m) as
the average horizontal projection of the crown
in the north-south and east-west orientations.
Diameter (D;3) was measured in centimeters
(cm) using standard diameter tapes. Total tree
height (H,) was measured in meters (m) using
height sticks/rods.

Destructive biomass data

Destructive sampling was used for the collection
of data for the development of allometric
equations. In total, 58 trees were felled, out
of which 46 were used for the development
of allometric equations and the remainder
were for testing the models. The study used
diameter class-based multi-stage sampling.
Thus, the contribution of each diameter class
was proportional to its dominance in the study
area. In each plot, trees were selected randomly
by using numbered tags that were fixed on each
tree during inventory.

Selected trees were felled and divided into
component parts, namely the trunk, branches,
and foliage. The trunks and branches were
cut into smaller logs that would easily fit into
the ovens. On the site, foliage was carefully
plucked and packed into plastic bags. The parts
of each tree were labelled with codes to ease
identification. Then the component parts were
oven dried to constant weight (approximately
zero moisture content). The leaves and twigs
were oven-dried at 70 + 2°C and woody samples
at 105 + 2°C (Tomczak et al. 2022). The dry
mass of the component parts of each tree were
then weighed and summed up to determine the
biomass content of each tree.

Table 1 highlights the structure of the forests
in the study area based on diameter class and
species composition per diameter class. This
informed the destructive sampling design.

Data analysis

Firstly, the relationships between dependent
(above-ground biomass) and explanatory
variables were tested using simple linear
regression. The explanatory variables were
diameter at breast height (D, tree total height
(Hy), and crown (Cy).
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Table 1 Forest structure by diameter class and species

Kachala O et al.

Diameter class

Proportion Species distribution per diameter class (%)

(cm) (%)

5.0-6.9 31 6 % Ochna sweinfurthiana, 12 % Lannea discolor, 12 % Diplorrynchus condylocarpon, 18 %
Uapaca kirkiana, 6 % Brachystegia manga, 12 % Brachystegia spiciformis, 6 % Pterocarpus
angolensis, 12 % Bauhinia petersiana, 6 % Brachystegia utilis, 6 % Raurea orientalis, 6 %
Dispyros krkiii, 6 % Anona senegalensis

7.0-8.9 45 4 % Ochna sweinfurthiana, 12 % Lannea discolor, 4 % Diplorrynchus condylocarpon, 20 %
Uapaca kirkiana, 8 % Brachystegia spiciformis, 8 % Pterocarpus angolensis, 4 % Bauhinia
petersiana, 20 % Brachystegia utilis, 8 % Anona senegalensis, 4 % Dalbergia nitidula, 4 %
Dispyros krkiii, 4 % Burkia africana, 4 % Rauwrea orientalis

9.0-10.9 14 13 % Uapaca kirkiana, 37 % Brachystegia spiciformis, 25 % Brachystegia utilis, 25 %
Brachystegia manga

>11 10 17 % Uapaca nitida, 17 % Brachystegia spiciformis, 49 % Brachystegia utilis, 17 % Azanza

garkaena

Table 2 The most commonly used models in Malawi which were tested

ID Model

Reference

Y,  B,=0.0267D*5

Y: Bi=exp(-2.134 +2.53 InD)
Ys B.,=3.01D-7.48

Y: B.=exp(2.516 In(D)-2.462
Y; In(By) =-1.232 +2.178*InD
Ys  0.21691 x D218

Y'7 0103685 X Dl.921719 X H‘J.844561

Grace et al. (2007)
Brown (1997)
Chidumayo (1997)
Malimbwi et al. (1994)
Basuki et al. (2009)
Kachamba et al. (2016)

Kachamba et al. (2016)

D, 3 is diameter at 1.3m above ground and H, is total tree height

Nonlinear Least-Squares (NLS) regression
analyses were conducted to investigate and
model the relationship between a response
variable - above ground biomass (B,;) and one
or more predictors — diameter at breast height
(Dy3), total height (H,), and crown diameter
(Ca). For the developed models, evaluation of
the best-fit models was based on correction factor
(CF), the coefficient of adjusted determination
(R?), and the root mean square error (RMSE) of
the fitted equation. All models were computed
using the MINITAB 19 statistical package.

The models developed in this study were
also compared with commonly used generalized
models in Malawi (Table 2). Evaluation of the
predictive power of the models was tested using
the criteria of the model’s biological logic,
the Furnival index (FI) for comparing models
with different dependent variables; the PRESS
statistic that requires fitting of the P parameter
model to each of N different data sets (Picard et
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al. 2012); the Absolute Mean Deviation (AMD)
and; the root mean square error (RMSE). The
best-fit model should have the lowest FI, PRESS
statistic, AMD and RMSE.

Mean biomass estimates for training data were
compared among the models using the analysis
of variance (ANOVA). Post-hoc tests were
conducted using Tukey’s multiple comparison
test.

RESULTS AND DISCUSSION

Development of allometric equations for
above-ground biomass estimation

The correlation between predictors and
response is a useful tool in establishing the true
relationship between two variables. In forestry,
correlation can be used to link difficult-to-
measure variables, such as volume, biomass or
carbon, to easy-to-measure tree characteristics,
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Figure 2 Relationships between AGB and three dendrometric variables

such as diameter or height, for example, with
statistically determined parameters. Chave
et al. (2005) suggest that the key variables to
be measured to assess the biomass are tree
diameter at breast height, tree height, and wood
density. This is because diameter and height are
commonly used in the mathematical formulas for
volume calculation, hence easy to understand.
Wood density and crown width/area are also
very important as they differ a lot among tree
genera and species (Picard et al. 2012).

In this study, the relationship between
above-ground biomass (B,;) and predictors was
initially tested using simple linear regression.
The predictors were diameter at breast height
(Dys), total tree height (H,), and crown
diameter (Cy).

Figure 2 indicates that diameter at breast
height (D;3) accounted for the greatest
proportion of variance in above-ground biomass
(Bsg), with a coefficient of determination (R?)
of 83.0%, followed by total tree height (H,) and
crown diameter (Cq), which explained 31.6%
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and 19.6% of the variance, respectively.

The findings align with the conclusions of
several previous studies that have emphasized
the predictive capacity of these variables in
forest biomass estimation (Chave et al. 2005,
Basuki et al. 2009, Diomé et al. 2010, Henry et
al. 2011, Pilli et al. 2006). Notably, Henry et al.
(2011) reported that 63% of the biomass models
developed for biomass estimation in the sub-
Saharan forests utilised D, 3 as a sole predictor
variable. However, to improve precision, more
combinations of predictors are often used for
biomass predictions.

Table 3 shows the results of the four
developed allometric equations for estimation of
above-ground biomass for community-managed
secondary miombo forests of Lake Chirwa Basin.
The models (Ys, Yo, Y10, and Yy;) estimate biomass
basing on D, 3 alone; D5 and H, (height); D,
and Cq4 (crown diameter) and; D3, H,, and C,,
respectively. Model Ys shows that B, is estimated
with adj. R* = 81.6 + 0.8344%, P<0.001. On the
other hand, Y;; accounts for 88.9 + 0.681%.
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Table 3 The four biomass allometric equations developed in this study

Code Model RMSE CF R? (Adj)
Ys In(B,,)= 0.41391 + InD"1374 0.8344 1.008 81.6
Yo {21(_1%?’7)6;5-0.623128 + InD!'07815 0.7588 1007 861
Yoo {;%]3%;;0.507231 + InD' 11982 4 07105 1006 865
Y, In(B,,)=-1.55052 + InD! 77 + 0.681 1005 48.9

1nH0.‘Zl 0328 + 1nC0.08781 05

B., = Biomass above ground; D, s = diameter at breast height (1.3 m from ground); H, = total

tree height; Cq = crown diameter.

The selection of predictor variables in this
study was guided by both empirical relationships
and the practical qualities that define effective
allometric equations, especially from the
perspective of end users such as forest managers,
carbon stock assessors, and policymakers. Good
allometric equations must strike a balance
between accuracy, simplicity, cost-effectiveness,
transferability, and field applicability (Chave
et al. 2014, Picard et al. 2012, Sileshi 2014).
These qualities were prioritised in the model
development process to ensure the equations
could be wused reliably in resource-limited
contexts.

Diameter at breast height (D, s) was selected
as the primary predictor due to its high
explanatory power (R? = 83% in this study),
ease of measurement, and consistent use in
forest inventory protocols. As Picard et al.
(2012) and Litton & Kauffman (2008) noted
diameter at breast height can be measured
with minimal error (=3%) using simple tools
such as a diameter tape, making it superior
to more complex or equipment-intensive
variables. In contrast, tree height often has
measurement errors ranging between 10-
15%, is labor-intensive to collect in closed-
canopy environments, and is typically recorded
only for a subsample of trees in national
forest inventories. Similarly, crown diameter,
although informative about tree architecture
and competitive space (Feldpausch et al. 2011,
Jucker et al. 2017), is not commonly recorded
due to field measurement constraints.

Model Y; relies solely on diameter at breast
height (D,s) and is the most straightforward
and practical. It is particularly suitable for
large-scale forest inventories, REDD+ MRV
systems, and rapid biomass assessments in
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developing countries, where resources, time,
or technical capacity for measuring additional
variables are constrained (Brown 1997, Chave
et al. 2005, Lumbres & Jin Lee 2013). Because
diameter at breast height (D,3) is a universally
measured and low-error variable, equation
Ys is especially useful in operational forestry,
ecological monitoring, and community-based
inventory systems where data consistency and
field simplicity are paramount. Despite being
the least statistically precise (Adj. R? = 81.6%),
its usability is unmatched, justifying its inclusion
in this suite of models.

Model Y, incorporates tree height which
improves  biomass  estimation  accuracy
because height integrates stand structure and
vertical growth, especially in multi-layered or
heterogeneous canopies (Chave et al. 2014,
Feldpausch et al. 2012). This model is most
suitable for projects where height data are
available from sample plots, remote sensing
(e.g., LiDAR), or advanced forest inventory
methods. It bridges practicality and improved
accuracy and is recommended for biomass
projects at research or national reporting levels
where tree height can be feasibly collected.

Model Y;, includes crown diameter which
enhances the model’s ability to capture variation
in tree biomass arising from crown expansion
and architecture (Poorter et al. 2015, Jucker
et al. 2017). This model becomes particularly
valuable in forest types where tree growth forms
are irregular or where crown competition
influences biomass accumulation (e.g., open-
canopy woodlands or disturbed forests). While
crown measurement is not routinely included
in national inventories, it is increasingly
accessible via drone imagery or high-resolution
aerial photography, which makes this model
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suitable for technology-assisted surveys and
studies focused on tree architecture or species
competition.

Model Y, combines all three predictors and
represents the best statistical performance (Adj.
R2 = 88.9%, lowest RMSE). It is recommended
in research, carbon accounting, and ecological
modeling settings where comprehensive and
accurate biomass estimation is needed, and
where all predictor variables can be reliably
collected. It is ideal for landscape-level studies,
biomass mapping, or calibration of remote
sensing algorithms. Given its superior fit, it
should be the model of choice when field
conditions or remote sensing data allow for the
collection of both height and crown diameter in
addition to diameter at breast height (D 3).

Although wood density is a well-recognized
determinant of biomass and is frequently
recommended in pan-tropical models (Chave et
al. 2005, Reyes et al. 1992), it was deliberately
excluded from the models in this study. This
decision reflects real-world limitations in Sub-
Saharan African contexts, particularly Malawi,
where species-level wood density data are sparse,
inconsistent, or unavailable. Furthermore, intra-
and inter-species variability in wood density is
often substantial (Litton & Kauffman 2008),
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which can introduce bias if general or averaged
values are used (Fayolle et al. 2013). Using
models based solely on measurable structural
variables avoids these pitfalls and enhances
model applicability.

In order to enhance the statistical robustness
of the developed allometric models, this study
deliberately employed distinct predictor
variables across different model formulations,
rather than relying on multiple transformations
of a single variable. This approach was adopted
to mitigate the risk of multicollinearity—a
common statistical concern in allometric
biomass modeling that can inflate standard
errors and distort parameter estimates. As
highlighted by Henry et al. (2011) and Zuur et
al. (2010), multicollinearity not only undermines
the reliability of regression coefficients but
also complicates the interpretation of variable
importance within a model. By using unique,
biologically relevant variables such as diameter
at breast height, total tree height, and crown
diameter, this study ensured a more stable and
interpretable model structure that aligns with
best practices in ecological modeling.

Figure 3 suggests a reasonable linear
relationship and equal variance of the error
terms.
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Plots of residual against fits of all models
showed reasonable linearity; no discernible
pattern, below and above the zero (0), signifying
consistency of variance over classes of the
predictor variables (Figure 3). This signifies that
all models developed in this study are reliable.

Comparing developed models against
commonly used models in Malawi

In Malawi, several allometric equations
are commonly used to estimate above-ground
biomass (AGB), including both pan-tropical
and regionally calibrated models. These
models are summarized in Table 2 and include
those developed by Brown (1997), Chave et
al. (2005), Basuki et al. (2009), Grace et al.
(2007), and Kachamba et al. (2016). In order to
evaluate their applicability to the Lake Chilwa
Basin, the study conducted a comparative
evaluation based on fit statistics and the models’
performance when applied to the local training
dataset.

Fit and evaluation statistics of the developed
and allometric equations commonly used in
Malawi are presented in Table 4. Results show
that FI ranged from -9.7443 to 0.6766. The
highest FI was observed in the model Y; and the
lowest AMD), was also observed in model Y;;. For
RMSE, the values ranged from 0.6810 to 6.9232.
The bias ranged from -6.0059 to 4.1918. The
highest PRESS statistic value was observed in
model Ys; while Y;; showed the lowest.

The generalised allometry for tropical forests,

Kachala O et al.

the model developed by Grace et al. (2007)
and two (2) models developed by Kachamba et
al. (2016) were completely incongruent. The
models recorded high FI and RMSE, and AMD
values over 0.5 times the 95% CI of the observed
mean. The PRESS statistic of these models was
very high. This implies that these models cannot
be used in Lake Chilwa Basin or any areas with
similar characteristics.

Models developed by Chidumayo (1997)
and Malimbwi (1994) showed relatively better
predictive power. FI, RMSE, AMD and PRESS
statistics were within reasonable ranges. However,
the fit statistics of these models were not as good
as for the models developed in this study. While
these models can be used in the study area or
any area with similar characteristics, larger
deviations from the mean should be expected.

Furthermore, the results showed that all
developed models have good predictive powers.
This signifies that all the equations developed in
this study may assist forest managers in acquiring
a more credible and accurate above-ground
biomass estimation for secondary forests in the
Lake Chilwa Basin in Malawi and Mozambique.
However, where resources and conditions
permit, model Yy, is the most recommended
model as it is the strongest model.

Figure 4 shows the comparisons of the
means of observed biomass against predictions
by generalized models and locally developed
models on the training dataset.

Table 4 Fit and evaluation statistics of all allometric equations

MODEL FI RMSE AMD PRESS Rank
Y, 0.3916 9.0106 4.1918 18.5441 7
Y. 0.6662 12.7802 4.2159 28.051 8
Ys 0.1073 2.3249 0.9562 1.4428 5
Y, 0.2347 5.5017 1.4059 4.0625 6
Y; 0.9232 15.615 6.0059 47.9309 11
Ys 0.8744 13.973 5.8974 48.5783 10
Y, 0.6875 12.886 4.3247 42.3814 9
Ys 0.0781 0.8344 0.6406 0.6962 4
Y, 0.0682 0.7588 0.5944 0.5758 3
Yio 0.0588 0.7105 0.589 0.5048 2
Yu 0.0522 0.681 0.5581 0.4638 1
©Forest Research Institute Malaysia 422
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Figure 4 Mean carbon estimates for models against observed mean

Figure 4 compares the observed mean
above-ground biomass (Y;), the mean biomass
estimates derived from generalized allometric
equations (Y;, Y;), and estimates from local
allometric equations developed in this study
(Ys, Y:). Among the generalised models, Y,
significantly underestimated biomass relative to
observed values (P <0.05), while equations Y, Y5,
Ys;and Y; overestimated biomass significantly (P
< 0.05). In contrast, models Y5 and Y, produced
estimates that were not statistically different
from the observed mean, indicating acceptable
predictive performance. The performance of the
developed models (Y5 Y;;) suggests improved
alignment with site-specific forest structure
compared to generalised equations.

Table 5 for Tukey’s multiple comparison tests
shows that the observed mean (Y)) and projected
means by models Ys Ys, Ys, Yo, Y19, and Yy, are not
statistically different. Models Y, Yo Y5 Ysand Y7
are different from all the model array.

Results revealed significant discrepancies
(P < 0.001) between the AGB estimates from
these generalised or regional models and
those generated by the locally developed
equations (Figures 4 and 5). Notably, the pan-
tropical models by Brown (1997) and Basuki
et al. (2009), as well as the Malawian miombo
woodland models by Kachamba et al. (2016),
consistently overestimated biomass in the study
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area. In contrast, the model developed by Grace
et al. (2007) for the N’hambita community
in Mozambique significantly underestimated
biomass. These findings align with observations
by Beets et al. (2012) and Sileshi (2014), who
reported that generalized allometric equations
often yield biased predictions when transferred
to new ecological settings.

Several factors may explain the observed
bias in these generalized models. First, they
were largely developed using tree samples with
a wide diameter range—often from 5 cm up to
160 ccm DBH (Chave et al. 2005, Basuki et al.
2009). In contrast, the current study focused
on secondary forests with a narrower diameter
distribution, predominantly between 5 and 12
cm. Because larger trees disproportionately
influence mean biomass values in general
models, their use in smaller-statured forests
leads to systematic overestimation. Second,
many of these generalized models were derived
from primary or protected forest areas, which
typically have higher biomass accumulation and
different structural characteristics compared
to degraded or recovering secondary forests
(Lumbres & Jin Lee 2013). These differences
in forest structure, stem form factor, and
species composition contribute significantly to
the misalignment of model outputs with local
conditions.
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Table 5 Tukey’s multiple comparison tests of the model estimates

Model N Mean St Dev 95% CI Grouping
Yo 39 28.13 13.93 (25.33, 30.93) A
Y; 39 28.00 12.99 (25.20, 30.79) A
Y, 39 24.20 13.12 (21.40, 26.99) A
Y; 39 23.66 14.14 (20.87, 26.46) A
Y, 39 16.91 9.12 (14.12,19.71) B
Ys 39 16.384 5.054 (13.587, 19.181) B
Y, 39 15.158 4.511 (12.361, 17.954) B
Y 39 15.104 4.387 (12.308, 17.901) B
Yo 39 15.092 4.337 (12.295, 17.888) B
Y, 39 15.073 4.159 (12.276, 17.870) B
Ys 39 15.046 4.011 (12.249, 17.843) B
Y, 39 6.342 3.539 (3.546, 9.139) G

Means with similar letters denote that biomass estimates are similar.

The underperformance of the Kachamba
et al. (2016) models is particularly noteworthy,
given that they were developed for Malawian
miombo woodlands. However, their calibration
data included larger trees and more mature
forest stands than those found in the Lake Chilwa
Basin. The secondary forests in this study are in
various stages of regrowth and are characterised
by smaller, more slender stems. Thus, despite
being country-specific, the Kachamba models
overestimated AGB because they reflect biomass
dynamics in a structurally different forest
context. This finding emphasizes that even
within a single country, ecological variability
must be accounted for when selecting biomass
estimation models.

In contrast, the models developed by
Chidumayo (1994) and Malimbwi (1997),
though older, performed reasonably well. This
may be attributed to the similarity in forest
conditions and diameter ranges used in their
development. For example, the Chidumayo
(1994) model was specifically derived from
miombo woodlands with trees in the 6-10 cm
DBH range, closely matching the structure of the
forests examined in this study. This underlines
the importance of diameter class matching
between model calibration data and application
contexts, a principle increasingly emphasised in
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recent biomass modeling literature (Chave et al.
2014, Goodman et al. 2014).

These results carry important implications
for forest carbon accounting, REDD+ MRV
systems, and forest management in Malawi.
The findings reinforce the need for site-
specific model calibration and validation,
even when national models exist. Relying on
generalised equations without ground-truthing
can lead to systematic biases, misinformed
policy decisions, and misallocation of carbon
credits or conservation resources. Therefore,
for landscapes like the Lake Chilwa Basin—
characterised by secondary, degraded, or
regenerating forests—Ilocally calibrated
equations, such as those developed in this
study, provide more accurate, reliable, and
ecologically meaningful biomass estimates.

CONCLUSIONS AND
RECOMMENDATIONS

This study developed and evaluated four
allometric equations for estimating above-
ground biomass (AGB) in community-managed
Miombo forests within the Lake Chilwa Basin
in Malawi. All four models demonstrated
acceptable predictive accuracy and consistency,
affirming the hypothesis that locally developed,
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site-specific equations provide more reliable
AGB estimates than generalised models.

Among the models, predictive performance
improved with the inclusion of additional
variables—specifically, total tree height and
crown diameter—supporting the hypothesis that
multi-variable models yield greater precision.
Nonetheless, the model based solely on diameter
at breast height (D,s) remains valuable for its
operational simplicity and cost-effectiveness in
resource-limited settings.

The comparative analysis further
demonstrated that generalised allometric
models exhibited significant biases when

applied outside their calibration domains.
These findings substantiate concerns about
the transferability of biomass models across
ecologically diverse regions. Thus, the results
support the conclusion that model selection
must be informed by ecological context, species
composition, and stand structure.

In light of these findings, the study
recommends the development and adoption
of site-specific allometric models tailored to the
ecological and silvicultural characteristics of
distinct forest zones in Malawi. The use of the
silvicultural guidebook of Malawi can facilitate
this process by guiding the delineation of
biomass models according to silvicultural zones
and land use systems. This zonal modeling
approach is essential to improve the accuracy of
biomass assessments and to inform sustainable
forest management and REDD+ initiatives in the
region.
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