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Accurate estimation of above-ground biomass (AGB) is essential for assessing carbon stocks and 
forming climate change mitigation strategies, especially in tropical ecosystems. This study developed 
site-specific allometric equations for estimating above-ground biomass in community-managed 
secondary miombo forests of the Lake Chilwa Basin, Malawi. Using destructive sampling of 58 trees 
across multiple plots, diameter at breast height (D1.3), total height (Ht), and crown diameter (Cd) were 
measured. Trees were oven-dried in parts (trunk, branches, foliage), and their dry weights summed. 
The relationship between dry weight and dendrometric variables (D1.3, Ht, Cd) was analysed using 
Nonlinear Least Squares regression to derive four models with different variable combinations. Model 
performance was evaluated using adjusted R², RMSE, Furnival Index, PRESS, and absolute mean 
deviation (AMD). The most robust model (Y11), incorporating D1.3, Ht, and Cd, explained 88.9% of 
biomass variability. Comparisons with commonly used generalised models revealed significant biases 
(P < 0.01), due to site-specific factors such as species composition and tree size range. While some 
regional models performed better, their applicability was still limited. These findings underscore the 
need for localised models to improve biomass estimation accuracy. The developed models provide 
practical tools for forest managers in the Lake Chilwa basin and similar ecological zones.
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INTRODUCTION

Accurate estimation of above-ground biomass 
(AGB) is fundamental for quantifying forest 
carbon stocks, understanding carbon dynamics, 
and supporting climate change mitigation 
policies, particularly in tropical and sub-
tropical forest ecosystems (Brahma et al. 2021). 
Secondary forests—defined as naturally or 
assisted-regenerating vegetation on previously 
disturbed or cleared land—are increasingly 
important for sequestering atmospheric carbon, 
restoring biodiversity, and sustaining ecosystem 
functions (Chazdon 2014). These forests 
frequently occupy abandoned agricultural 
land or degraded landscapes and are central to 
contemporary ecological restoration efforts.

In sub-Saharan Africa, many forested 
landscapes are managed through decentralised 
systems. Community-managed forests, often 
referred to as Village Forest Areas (VFAs), 
involve local communities in the stewardship 
of forest resources, including their protection, 

restoration, and sustainable use (FAO 2016). 
These participatory governance models have 
shown promise in enhancing forest condition 
while supporting rural livelihoods.

The Lake Chilwa Basin, located in 
southeastern Malawi and extending into 
western Mozambique, is an ecologically and 
socio-economically significant transboundary 
landscape. The basin includes Lake Chilwa, 
Malawi’s second-largest lake and a designated 
Ramsar site of international importance due to 
its biodiversity, extensive wetlands, and critical 
role as a habitat for migratory birds. The basin 
supports diverse livelihoods through agriculture, 
fishing, and forest product use, and is a priority 
area for sustainable development and regional 
environmental cooperation.

Surrounding the basin are extensive Miombo 
woodlands, a tropical deciduous forest type 
dominated by species in the genera Brachystegia, 
Julbernardia, and Isoberlinia (Frost 1996). These 
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woodlands span much of southern and eastern 
Africa and are vital for fuelwood, timber, non-
timber forest products, and carbon storage. In 
both Malawi and Mozambique, community-
managed secondary Miombo forests are playing 
a growing role in climate adaptation, land 
restoration, and rural energy provision.

Despite their importance, estimating biomass 
in these landscapes remains challenging due to 
ecological heterogeneity, variable disturbance 
histories, and the limited availability of site-
specific data. Widely used allometric models, 
such as those developed by Brown (1997) and 
Chave et al. (2005), were primarily based on 
data from mature, undisturbed tropical forests 
with large trees. When applied to secondary or 
degraded forests, these models often yield biased 
estimates (Basuki et al. 2009, Beets et al. 2012, 
Kachamba et al. 2016). Additionally, research 
has demonstrated that allometric relationships 
vary significantly with forest structure, species 
composition, and management history (Cairns 
et al. 2003, Clark et al. 2001, Kebede & 
Soromessa 2018), highlighting the limitations of 
generalised models.

In Malawi, existing biomass studies have 
largely focused on primary Miombo woodlands, 
with little attention given to secondary forests 
under community management. No published 

studies to date have developed biomass models 
specifically for secondary Miombo forests in the 
transboundary Lake Chilwa Basin, despite the 
growing importance of such data for REDD+ 
programs and carbon accounting initiatives 
(Kamaljit et al. 2023).

This study addresses this knowledge gap by 
developing and validating site-specific allometric 
equations for estimating above-ground biomass 
in community-managed secondary Miombo 
forests within the Lake Chilwa Basin. The 
models were derived using locally collected 
dendrometric data, and their performance was 
evaluated against existing generalised equations. 
The results aim to improve biomass estimation 
accuracy and inform forest management, carbon 
assessments, and climate finance initiatives in 
similar ecological zones.

METHODOLOGY

Study area and study sites

The study was conducted in the Lake Chilwa 
Basin, a transboundary landscape situated in 
southeastern Malawi and western Mozambique, 
covering approximately 8350 km², with 2700 km² 
area falling within Mozambique (Sagona 2013) 
(Figure 1). Elevations range from 627 m to 1050 

Figure 1	 Map of the study area in Malawi and specific study sites (VFAs) 
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m above sea level, and the region experiences 
a subtropical climate with mean annual rainfall 
between 800 mm and 1200 mm (Zomba District 
Assembly 2009).

The study area is primarily savannah, turning 
into moderate wetlands towards Lake Chilwa. 
The vegetation is dominated by Miombo 
woodland, composed primarily of tree genera 
such as Brachystegia, Julbernardia, and Isoberlinia 
(Frost 1996). These woodlands are characterised 
by deciduous tree species and a pronounced dry 
season. Study sites were located in secondary 
Miombo forests, specifically within community-
managed areas known locally as Village Forest 
Areas (VFAs), which are governed by local 
communities. These forests have undergone 
various degrees of degradation and natural 
regeneration. 

Forest inventory

Initially, a pilot inventory was conducted. The 
initial inventory involved the establishment 
and measurement of 10 semi-permanent 
sample plots, each measuring 10 m × 10 m, 
strategically placed across representative forest 
areas within the basin. The primary purpose of 
this preliminary survey was to collect baseline 
data on tree diameter distribution and other key 
forest characteristics to estimate the required 
sample size for the full inventory.

Specifically, the coefficient of variation in 
diameter class frequencies from these 10 plots was 
used in a standard sample size formula (Pearson 
et al. 2005) to calculate the total number of plots 
needed to achieve a 95% confidence level with 
10% precision in estimating the diameter class 
distribution.

Final inventory followed the pilot inventory. 
In contrast, the final inventory involved the 
full deployment of this statistically determined 
number of plots across the basin. These plots 
were also semi-permanent and followed the 
same 10 m × 10 m square layout, but they were 
more randomly distributed over a larger area to 
capture the full spatial and structural variability 
of the forests. The final inventory provided 
a more robust dataset for analysing forest 
structure, assessing resource conditions, and 
informing destructive sampling (collecting data 
for biomass models), which followed. 

All trees in each plot, were assessed for 

diameter at breast height (D1.3 = 1.3 m from the 
ground); height (Ht); and crown diameter (Cd). 
Crown diameter was measured in meters (m) as 
the average horizontal projection of the crown 
in the north-south and east-west orientations. 
Diameter (D1.3) was measured in centimeters 
(cm) using standard diameter tapes. Total tree 
height (Ht) was measured in meters (m) using 
height sticks/rods. 

Destructive biomass data

Destructive sampling was used for the collection 
of data for the development of allometric 
equations. In total, 58 trees were felled, out 
of which 46 were used for the development 
of allometric equations and the remainder 
were for testing the models. The study used 
diameter class-based multi-stage sampling. 
Thus, the contribution of each diameter class 
was proportional to its dominance in the study 
area. In each plot, trees were selected randomly 
by using numbered tags that were fixed on each 
tree during inventory.

Selected trees were felled and divided into 
component parts, namely the trunk, branches, 
and foliage. The trunks and branches were 
cut into smaller logs that would easily fit into 
the ovens. On the site, foliage was carefully 
plucked and packed into plastic bags. The parts 
of each tree were labelled with codes to ease 
identification. Then the component parts were 
oven dried to constant weight (approximately 
zero moisture content). The leaves and twigs 
were oven-dried at 70 ± 2°C and woody samples 
at 105 ± 2°C (Tomczak et al. 2022). The dry 
mass of the component parts of each tree were 
then weighed and summed up to determine the 
biomass content of each tree. 

Table 1 highlights the structure of the forests 
in the study area based on diameter class and 
species composition per diameter class. This 
informed the destructive sampling design. 

Data analysis 

Firstly, the relationships between dependent 
(above-ground biomass) and explanatory 
variables were tested using simple linear 
regression. The explanatory variables were 
diameter at breast height (D1.3, tree total height 
(Ht), and crown (Cd).   
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Nonlinear Least-Squares (NLS) regression 
analyses were conducted to investigate and 
model the relationship between a response 
variable - above ground biomass (Bag) and one 
or more predictors – diameter at breast height 
(D1.3), total height (Ht), and crown diameter 
(Cd). For the developed models, evaluation of 
the best-fit models was based on correction factor 
(CF), the coefficient of adjusted determination 
(R2), and the root mean square error (RMSE) of 
the fitted equation. All models were computed 
using the MINITAB 19 statistical package. 

The models developed in this study were 
also compared with commonly used generalized 
models in Malawi (Table 2). Evaluation of the 
predictive power of the models was tested using 
the criteria of the model’s biological logic, 
the Furnival index (FI) for comparing models 
with different dependent variables; the PRESS 
statistic that requires fitting of the P parameter 
model to each of N different data sets (Picard et 

al. 2012); the Absolute Mean Deviation (AMD) 
and; the root mean square error (RMSE). The 
best-fit model should have the lowest FI, PRESS 
statistic, AMD and RMSE.

Mean biomass estimates for training data were 
compared among the models using the analysis 
of variance (ANOVA).  Post-hoc tests were 
conducted using Tukey’s multiple comparison 
test.  

RESULTS AND DISCUSSION 

Development of allometric equations for 
above-ground biomass estimation

The correlation between predictors and 
response is a useful tool in establishing the true 
relationship between two variables. In forestry, 
correlation can be used to link difficult-to-
measure variables, such as volume, biomass or 
carbon, to easy-to-measure tree characteristics, 

Table 1 Forest structure by diameter class and species

Diameter class 
(cm)

Proportion 
(%)

Species distribution per diameter class (%)

5.0–6.9 31 6 % Ochna sweinfurthiana, 12 % Lannea discolor, 12 % Diplorrynchus condylocarpon, 18 % 
Uapaca kirkiana, 6 % Brachystegia manga, 12 % Brachystegia spiciformis, 6 % Pterocarpus 
angolensis, 12 % Bauhinia petersiana, 6 % Brachystegia utilis, 6 % Raurea orientalis, 6 % 
Dispyros krkiii, 6 % Anona senegalensis

7.0–8.9 45 4 % Ochna sweinfurthiana, 12 % Lannea discolor, 4 % Diplorrynchus condylocarpon, 20 % 
Uapaca kirkiana, 8 % Brachystegia spiciformis, 8 % Pterocarpus angolensis, 4 % Bauhinia 
petersiana, 20 % Brachystegia utilis, 8 % Anona senegalensis, 4 % Dalbergia nitidula, 4 % 
Dispyros krkiii, 4 % Burkia africana, 4 % Raurea orientalis

9.0–10.9 14 13 % Uapaca kirkiana, 37 % Brachystegia spiciformis, 25 %  Brachystegia utilis, 25 % 
Brachystegia manga

≥11 10 17 % Uapaca nitida, 17 % Brachystegia spiciformis, 49 % Brachystegia utilis, 17 % Azanza 
garkaena

Table 2 The most commonly used models in Malawi which were tested

ID Model Reference

Y1 Bag= 0.0267D2.5996 Grace et al. (2007)

Y2 Bag= exp(− 2.134 + 2.53 lnD) Brown (1997)

Y3 Bag= 3.01D-7.48 Chidumayo (1997)

Y4 Bag= exp(2.516 ln(D)-2.462 Malimbwi et al. (1994)

Y5 In(Bag) = -1.232 + 2.178*lnD Basuki et al. (2009)

Y6 0.21691 × D2.318391 Kachamba et al. (2016)

Y7 0.103685 × D1.921719 × H0.844561 Kachamba et al. (2016)

D1.3 is diameter at 1.3m above ground and Ht is total tree height
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such as diameter or height, for example, with 
statistically determined parameters. Chave 
et al. (2005) suggest that the key variables to 
be measured to assess the biomass are tree 
diameter at breast height, tree height, and wood 
density. This is because diameter and height are 
commonly used in the mathematical formulas for 
volume calculation, hence easy to understand. 
Wood density and crown width/area are also 
very important as they differ a lot among tree 
genera and species (Picard et al. 2012).   

In this study, the relationship between 
above-ground biomass (Bag) and predictors was 
initially tested using simple linear regression. 
The predictors were diameter at breast height 
(D1.3), total tree height (Ht), and crown 
diameter (Cd).  

Figure 2 indicates that diameter at breast 
height (D1.3) accounted for the greatest 
proportion of variance in above-ground biomass 
(Bag), with a coefficient of determination (R²) 
of 83.0%, followed by total tree height (Ht) and 
crown diameter (Cd), which explained 31.6% 

and 19.6% of the variance, respectively.
The findings align with the conclusions of 

several previous studies that have emphasized 
the predictive capacity of these variables in 
forest biomass estimation (Chave et al. 2005, 
Basuki et al. 2009, Diomé et al. 2010, Henry et 
al. 2011, Pilli et al. 2006). Notably, Henry et al. 
(2011) reported that 63% of the biomass models 
developed for biomass estimation in the sub-
Saharan forests utilised D1.3 as a sole predictor 
variable. However, to improve precision, more 
combinations of predictors are often used for 
biomass predictions. 

Table 3 shows the results of the four 
developed allometric equations for estimation of 
above-ground biomass for community-managed 
secondary miombo forests of Lake Chirwa Basin. 
The models (Y8, Y9, Y10, and Y11) estimate biomass 
basing on D1.3 alone; D1.3 and Ht (height); D1.3 
and Cd (crown diameter) and; D1.3, Ht, and Cd, 
respectively.  Model Y8 shows that Bag is estimated 
with adj. R2 = 81.6 ± 0.8344%, P<0.001. On the 
other hand, Y11 accounts for 88.9 ± 0.681%. 

Figure 2    Relationships between AGB and three dendrometric variables
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The selection of predictor variables in this 
study was guided by both empirical relationships 
and the practical qualities that define effective 
allometric equations, especially from the 
perspective of end users such as forest managers, 
carbon stock assessors, and policymakers. Good 
allometric equations must strike a balance 
between accuracy, simplicity, cost-effectiveness, 
transferability, and field applicability (Chave 
et al. 2014, Picard et al. 2012, Sileshi 2014). 
These qualities were prioritised in the model 
development process to ensure the equations 
could be used reliably in resource-limited 
contexts. 

Diameter at breast height (D1.3) was selected 
as the primary predictor due to its high 
explanatory power (R² = 83% in this study), 
ease of measurement, and consistent use in 
forest inventory protocols. As Picard et al. 
(2012) and Litton & Kauffman (2008) noted 
diameter at breast height can be measured 
with minimal error (≈3%) using simple tools 
such as a diameter tape, making it superior 
to more complex or equipment-intensive 
variables. In contrast, tree height often has 
measurement errors ranging between 10–
15%, is labor-intensive to collect in closed-
canopy environments, and is typically recorded 
only for a subsample of trees in national 
forest inventories. Similarly, crown diameter, 
although informative about tree architecture 
and competitive space (Feldpausch et al. 2011, 
Jucker et al. 2017), is not commonly recorded 
due to field measurement constraints. 

Model Y8 relies solely on diameter at breast 
height (D1.3) and is the most straightforward 
and practical. It is particularly suitable for 
large-scale forest inventories, REDD+ MRV 
systems, and rapid biomass assessments in 

developing countries, where resources, time, 
or technical capacity for measuring additional 
variables are constrained (Brown 1997, Chave 
et al. 2005, Lumbres & Jin Lee 2013). Because 
diameter at breast height (D1.3) is a universally 
measured and low-error variable, equation 
Y8 is especially useful in operational forestry, 
ecological monitoring, and community-based 
inventory systems where data consistency and 
field simplicity are paramount. Despite being 
the least statistically precise (Adj. R² = 81.6%), 
its usability is unmatched, justifying its inclusion 
in this suite of models.

Model Y9 incorporates tree height which 
improves biomass estimation accuracy 
because height integrates stand structure and 
vertical growth, especially in multi-layered or 
heterogeneous canopies (Chave et al. 2014, 
Feldpausch et al. 2012). This model is most 
suitable for projects where height data are 
available from sample plots, remote sensing 
(e.g., LiDAR), or advanced forest inventory 
methods. It bridges practicality and improved 
accuracy and is recommended for biomass 
projects at research or national reporting levels 
where tree height can be feasibly collected.

Model Y10 includes crown diameter which 
enhances the model’s ability to capture variation 
in tree biomass arising from crown expansion 
and architecture (Poorter et al. 2015, Jucker 
et al. 2017). This model becomes particularly 
valuable in forest types where tree growth forms 
are irregular or where crown competition 
influences biomass accumulation (e.g., open-
canopy woodlands or disturbed forests). While 
crown measurement is not routinely included 
in national inventories, it is increasingly 
accessible via drone imagery or high-resolution 
aerial photography, which makes this model 

Table 3 The four biomass allometric equations developed in this study

Code Model RMSE CF R2 (Adj)

Y8 In(Bag)= 0.41391 + lnD1.13754 0.8344 1.008 81.6

Y9
In(Bag)= -0.623128 + lnD1.07815 + 
lnH0.276845 0.7588 1.007 86.1

Y10
In(Bag)= -0.507231 + lnD1.11982 + 
lnC0.107978 0.7105 1.006 86.5

Y11
In(Bag)= -1.55052 + lnD1.07957 + 
lnH0.210328 + lnC0.0878105 0.681 1.005 88.9

Bag = Biomass above ground; D1.3 = diameter at breast height (1.3 m from ground); Ht = total 
tree height; Cd = crown diameter.
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suitable for technology-assisted surveys and 
studies focused on tree architecture or species 
competition.

Model Y11 combines all three predictors and 
represents the best statistical performance (Adj. 
R² = 88.9%, lowest RMSE). It is recommended 
in research, carbon accounting, and ecological 
modeling settings where comprehensive and 
accurate biomass estimation is needed, and 
where all predictor variables can be reliably 
collected. It is ideal for landscape-level studies, 
biomass mapping, or calibration of remote 
sensing algorithms. Given its superior fit, it 
should be the model of choice when field 
conditions or remote sensing data allow for the 
collection of both height and crown diameter in 
addition to diameter at breast height (D1.3).

Although wood density is a well-recognized 
determinant of biomass and is frequently 
recommended in pan-tropical models (Chave et 
al. 2005, Reyes et al. 1992), it was deliberately 
excluded from the models in this study. This 
decision reflects real-world limitations in Sub-
Saharan African contexts, particularly Malawi, 
where species-level wood density data are sparse, 
inconsistent, or unavailable. Furthermore, intra- 
and inter-species variability in wood density is 
often substantial (Litton & Kauffman 2008), 

which can introduce bias if general or averaged 
values are used (Fayolle et al. 2013). Using 
models based solely on measurable structural 
variables avoids these pitfalls and enhances 
model applicability.

In order to enhance the statistical robustness 
of the developed allometric models, this study 
deliberately employed distinct predictor 
variables across different model formulations, 
rather than relying on multiple transformations 
of a single variable. This approach was adopted 
to mitigate the risk of multicollinearity—a 
common statistical concern in allometric 
biomass modeling that can inflate standard 
errors and distort parameter estimates. As 
highlighted by Henry et al. (2011) and Zuur et 
al. (2010), multicollinearity not only undermines 
the reliability of regression coefficients but 
also complicates the interpretation of variable 
importance within a model. By using unique, 
biologically relevant variables such as diameter 
at breast height, total tree height, and crown 
diameter, this study ensured a more stable and 
interpretable model structure that aligns with 
best practices in ecological modeling.  

Figure 3 suggests a reasonable linear 
relationship and equal variance of the error 
terms. 

Figure 3	 Residual versus Fits plots
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Plots of residual against fits of all models 
showed reasonable linearity; no discernible 
pattern, below and above the zero (0), signifying 
consistency of variance over classes of the 
predictor variables (Figure 3). This signifies that 
all models developed in this study are reliable. 

Comparing developed models against 
commonly used models in Malawi

In Malawi, several allometric equations 
are commonly used to estimate above-ground 
biomass (AGB), including both pan-tropical 
and regionally calibrated models. These 
models are summarized in Table 2 and include 
those developed by Brown (1997), Chave et 
al. (2005), Basuki et al. (2009), Grace et al. 
(2007), and Kachamba et al. (2016). In order to 
evaluate their applicability to the Lake Chilwa 
Basin, the study conducted a comparative 
evaluation based on fit statistics and the models’ 
performance when applied to the local training 
dataset. 

Fit and evaluation statistics of the developed 
and allometric equations commonly used in 
Malawi are presented in Table 4. Results show 
that FI ranged from -9.7443 to 0.6766. The 
highest FI was observed in the model Y5 and the 
lowest AMD, was also observed in model Y11. For 
RMSE, the values ranged from 0.6810 to 6.9232. 
The bias ranged from -6.0059 to 4.1918. The 
highest PRESS statistic value was observed in 
model Y6 while Y11 showed the lowest.  

The generalised allometry for tropical forests, 

the model developed by Grace et al. (2007) 
and two (2) models developed by Kachamba et 
al. (2016) were completely incongruent. The 
models recorded high FI and RMSE, and AMD 
values over 0.5 times the 95% CI of the observed 
mean. The PRESS statistic of these models was 
very high. This implies that these models cannot 
be used in Lake Chilwa Basin or any areas with 
similar characteristics.

Models developed by Chidumayo (1997) 
and Malimbwi (1994) showed relatively better 
predictive power. FI, RMSE, AMD and PRESS 
statistics were within reasonable ranges. However, 
the fit statistics of these models were not as good 
as for the models developed in this study. While 
these models can be used in the study area or 
any area with similar characteristics, larger 
deviations from the mean should be expected. 

Furthermore, the results showed that all 
developed models have good predictive powers. 
This signifies that all the equations developed in 
this study may assist forest managers in acquiring 
a more credible and accurate above-ground 
biomass estimation for secondary forests in the 
Lake Chilwa Basin in Malawi and Mozambique. 
However, where resources and conditions 
permit, model Y11 is the most recommended 
model as it is the strongest model.

Figure 4 shows the comparisons of the 
means of observed biomass against predictions 
by generalized models and locally developed 
models on the training dataset.  

Table 4  Fit and evaluation statistics of all allometric equations

MODEL FI RMSE AMD PRESS Rank

Y1 0.3916 9.0106 4.1918 18.5441 7

Y2 0.6662 12.7802 4.2159 28.051 8

Y3 0.1073 2.3249 0.9562 1.4428 5

Y4 0.2347 5.5017 1.4059 4.0625 6

Y5 0.9232 15.615 6.0059 47.9309 11

Y6 0.8744 13.973 5.8974 48.5783 10

Y7 0.6875 12.886 4.3247 42.3814 9

Y8 0.0781 0.8344 0.6406 0.6962 4

Y9 0.0682 0.7588 0.5944 0.5758 3

Y10 0.0588 0.7105 0.589 0.5048 2

Y11 0.0522 0.681 0.5581 0.4638 1
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Figure 4 compares the observed mean 
above-ground biomass (Y0), the mean biomass 
estimates derived from generalized allometric 
equations (Y1, Y7), and estimates from local 
allometric equations developed in this study 
(Y8, Y11). Among the generalised models, Y1 
significantly underestimated biomass relative to 
observed values (P < 0.05), while equations Y2, Y5, 
Y6 and Y7    overestimated biomass significantly (P 
< 0.05). In contrast, models Y3, and Y4 produced 
estimates that were not statistically different 
from the observed mean, indicating acceptable 
predictive performance. The performance of the 
developed models (Y8, Y11) suggests improved 
alignment with site-specific forest structure 
compared to generalised equations.

Table 5 for Tukey’s multiple comparison tests 
shows that the observed mean (Y0) and projected 
means by models Y3, Y4, Y8, Y9, Y10, and Y11, are not 
statistically different. Models Y1, Y2, Y5, Y6 and Y7 

are different from all the model array.
Results revealed significant discrepancies 

(P < 0.001) between the AGB estimates from 
these generalised or regional models and 
those generated by the locally developed 
equations (Figures 4 and 5). Notably, the pan-
tropical models by Brown (1997) and Basuki 
et al. (2009), as well as the Malawian miombo 
woodland models by Kachamba et al. (2016), 
consistently overestimated biomass in the study 

area. In contrast, the model developed by Grace 
et al. (2007) for the N’hambita community 
in Mozambique significantly underestimated 
biomass. These findings align with observations 
by Beets et al. (2012) and Sileshi (2014), who 
reported that generalized allometric equations 
often yield biased predictions when transferred 
to new ecological settings.

Several factors may explain the observed 
bias in these generalized models. First, they 
were largely developed using tree samples with 
a wide diameter range—often from 5 cm up to 
160 cm DBH (Chave et al. 2005, Basuki et al. 
2009). In contrast, the current study focused 
on secondary forests with a narrower diameter 
distribution, predominantly between 5 and 12 
cm. Because larger trees disproportionately 
influence mean biomass values in general 
models, their use in smaller-statured forests 
leads to systematic overestimation. Second, 
many of these generalized models were derived 
from primary or protected forest areas, which 
typically have higher biomass accumulation and 
different structural characteristics compared 
to degraded or recovering secondary forests 
(Lumbres & Jin Lee 2013). These differences 
in forest structure, stem form factor, and 
species composition contribute significantly to 
the misalignment of model outputs with local 
conditions.

Figure 4	 Mean carbon estimates for models against observed mean
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The underperformance of the Kachamba 
et al. (2016) models is particularly noteworthy, 
given that they were developed for Malawian 
miombo woodlands. However, their calibration 
data included larger trees and more mature 
forest stands than those found in the Lake Chilwa 
Basin. The secondary forests in this study are in 
various stages of regrowth and are characterised 
by smaller, more slender stems. Thus, despite 
being country-specific, the Kachamba models 
overestimated AGB because they reflect biomass 
dynamics in a structurally different forest 
context. This finding emphasizes that even 
within a single country, ecological variability 
must be accounted for when selecting biomass 
estimation models.

In contrast, the models developed by 
Chidumayo (1994) and Malimbwi (1997), 
though older, performed reasonably well. This 
may be attributed to the similarity in forest 
conditions and diameter ranges used in their 
development. For example, the Chidumayo 
(1994) model was specifically derived from 
miombo woodlands with trees in the 6–10 cm 
DBH range, closely matching the structure of the 
forests examined in this study. This underlines 
the importance of diameter class matching 
between model calibration data and application 
contexts, a principle increasingly emphasised in 

recent biomass modeling literature (Chave et al. 
2014, Goodman et al. 2014).

These results carry important implications 
for forest carbon accounting, REDD+ MRV 
systems, and forest management in Malawi. 
The findings reinforce the need for site-
specific model calibration and validation, 
even when national models exist. Relying on 
generalised equations without ground-truthing 
can lead to systematic biases, misinformed 
policy decisions, and misallocation of carbon 
credits or conservation resources. Therefore, 
for landscapes like the Lake Chilwa Basin—
characterised by secondary, degraded, or 
regenerating forests—locally calibrated 
equations, such as those developed in this 
study, provide more accurate, reliable, and 
ecologically meaningful biomass estimates.

CONCLUSIONS AND 
RECOMMENDATIONS 

This study developed and evaluated four 
allometric equations for estimating above-
ground biomass (AGB) in community-managed 
Miombo forests within the Lake Chilwa Basin 
in Malawi. All four models demonstrated 
acceptable predictive accuracy and consistency, 
affirming the hypothesis that locally developed, 

Table 5  Tukey’s multiple comparison tests of the model estimates

Model N Mean St Dev 95% CI Grouping

Y6 39 28.13 13.93 (25.33, 30.93) A

Y5 39 28.00 12.99 (25.20, 30.79) A

Y2 39 24.20 13.12 (21.40, 26.99) A

Y7 39 23.66 14.14 (20.87, 26.46) A

Y4 39 16.91 9.12 (14.12, 19.71) B

Y3 39 16.384 5.054 (13.587, 19.181) B

Y0 39 15.158 4.511 (12.361, 17.954) B

Y11 39 15.104 4.387 (12.308, 17.901) B

Y10 39 15.092 4.337 (12.295, 17.888) B

Y9 39 15.073 4.159 (12.276, 17.870) B

Y8 39 15.046 4.011 (12.249, 17.843) B

Y1 39 6.342 3.539 (3.546, 9.139) C

Means with similar letters denote that biomass estimates are similar.
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site-specific equations provide more reliable 
AGB estimates than generalised models.

Among the models, predictive performance 
improved with the inclusion of additional 
variables—specifically, total tree height and 
crown diameter—supporting the hypothesis that 
multi-variable models yield greater precision. 
Nonetheless, the model based solely on diameter 
at breast height (D1.3) remains valuable for its 
operational simplicity and cost-effectiveness in 
resource-limited settings.

The comparative analysis further 
demonstrated that generalised allometric 
models exhibited significant biases when 
applied outside their calibration domains. 
These findings substantiate concerns about 
the transferability of biomass models across 
ecologically diverse regions. Thus, the results 
support the conclusion that model selection 
must be informed by ecological context, species 
composition, and stand structure.

In light of these findings, the study 
recommends the development and adoption 
of site-specific allometric models tailored to the 
ecological and silvicultural characteristics of 
distinct forest zones in Malawi. The use of the 
silvicultural guidebook of Malawi can facilitate 
this process by guiding the delineation of 
biomass models according to silvicultural zones 
and land use systems. This zonal modeling 
approach is essential to improve the accuracy of 
biomass assessments and to inform sustainable 
forest management and REDD+ initiatives in the 
region.
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