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Agroforestry and block plantations are increasingly recognised in Kerala as sustainable land-use 
strategies that integrate trees into farming systems, providing ecological and economic benefits. 
Among the tree species promoted in the region, Melia dubia (Malabar Neem) has gained popularity 
due to its fast growth and commercial potential. However, identifying suitable areas for its cultivation 
is essential to ensure plantation success, especially in Kerala’s diverse agro-climatic settings and 
fragmented landholdings. Ecological Niche Modelling (ENM) serves as a valuable tool for predicting 
the potential distribution of species based on environmental variables, aiding in species-site matching 
and guiding plantation planning. In this study, the Maximum Entropy (MaxEnt) model (v. 3.4.3) with 
a regularisation multiplier of one was used to delineate the ecological niche of M. dubia in Kerala.  
The model output indicates that M. dubia is highly suitable in 2.57% of area in Kerala, and moderately 
suitable in 3.33%, and low suitable in 7.43%. District-wise, Palakkad (1.09%), Wayanad (0.57%), and 
Thrissur (0.53%) show higher suitability compared to other districts. Dedicated and adaptive tree 
management practices can help improve plantation outcomes in marginally suitable areas. The results 
demonstrate that ENM can significantly contribute to upscaling agroforestry by enabling accurate site 
recommendations, minimising failure risks, and supporting strategic expansion of tree-based systems 
in Kerala.
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INTRODUCTION

Ecological Niche Modelling (ENM) is a widely 
adopted approach in ecological research to 
estimate the suitable habitat range of a species 
under current and future environmental 
conditions. It enables identification of 
climatically favorable zones and helps assess 
habitat stability across different climate change 
scenarios (Adhikari et al. 2018, Adhikari et al. 
2019). While often used interchangeably with 
Species Distribution Modelling (SDM), ENM 
specifically aims to estimate the fundamental 
ecological niche of a species—based on abiotic 
factors—whereas SDM focuses on mapping 
observed species distributions in geographic 
space, incorporating presence-absence data 
and dispersal limitations (Melo-Merino et 
al. 2020). Over the years, ENM has played a 
significant role in biodiversity conservation, 
especially in projecting the potential spread or 

decline of species. For instance, Rajpoot et al. 
(2020) conducted niche modelling for Boswellia 
serrata, highlighting its limited potential range 
in natural habitats and the need for long-term 
conservation strategies. Similarly, ENM has 
been employed in studies involving both flora 
and fauna to support conservation planning 
for endangered species (Majumdar et al. 2019, 
Mipun et al. 2019, Pradhan et al. 2020). Beyond 
conservation, ENM holds promising applications 
in agroforestry and farm forestry systems, where 
matching species with ecologically appropriate 
sites is vital for productivity and sustainability. 
Accurate identification of niche suitability can 
guide farmers and planners in selecting tree 
species best adapted to specific climatic and 
geographic conditions. In China, ENM was 
used to determine the climate niches of ten 
tree species and assess potential distribution 
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shifts due to climate change (Ranjitkar et al. 
2016). Likewise, Wang et al. (2017) employed 
the BiodiversityR package to define persistent 
suitability zones for Xanthoceras sorbifolium in 
China. In Nepal, MaxEnt modelling indicated 
that only 24% of the national area was favorable 
for Alnus nepalensis, demonstrating the model’s 
potential in guiding plantation strategies (Rana 
et al. 2018).

In the context of Kerala, where agroforestry 
is increasingly promoted for its ecological and 
livelihood benefits, the use of ENM offers a 
strategic advantage. The state of Kerala has 
rich biodiversity owing to its edapho-climatic 
conditions. Thus, the crops grown here are highly 
heterogeneous with each crop or plant having 
their own micro-niches, which are conducive for 
better growth and yield. Added to these favorable 
concrete traits is the strong appetite for new 
crops and the search for new plant resources 
with the aim of diversifying or innovating crops 
by educated farmers. Additionally, reviewing the 
tree plantations and agroforestry practices in 
the state of Kerala, it is evident that the choice 
of tree species has always changed with time. For 
instance, trees like Eucalyptus, Acacia mangium 
and Albizzia falcataria were introduced in the 
state and later these species were forsaken for 
alternative species. There is increased interest 
among the stakeholders to take up indigenous 
tree species cultivation.  

Melia dubia has gained attention and has 
expanded its scope because of its notable 
attributes. It is fast growing tree with straight 
stem without much branches and less shade 
effect, making it an ideal choice for agroforestry 
practice (Handa et al. 2020, Chavan et al. 2022). 
In India, M. dubia is cultivated as a short-rotation 
species, typically harvested after 6–10 years. It 
can grow up to 40 feet in height within just 2 
years of planting, and a 10-year-old plantation 
yields up to 40 tons of biomass per acre. These 
features make it a commercially viable timber 
tree, for agroforestry plantation or any other 
plantations, which can yield maximum in 
shortest period. Despite the limitations in wood 
density for structural usage in short rotation 
duration, it is suitable for packaging industries, 
matchsticks, mini furniture and musical 
instruments, among others. (Gupta et al. 2019). 
Melia dubia is identified as an alternative species 
for multiple uses. With more than 20% of the 

total geographical area under forest and tree 
cover in India, the wood demand of the country 
is met from the import as well as the wood 
sourced from Trees Outside Forests (TOF) like 
the plantations and agroforestry. Forest-related 
legislatives and policies directly emphasised 
on conservation of the forest resources and 
encourage the wood industries to meet their own 
raw material needs. The National Agroforestry 
Policy of India evidently states that agroforestry 
has to be promoted for meeting the increasing 
raw material demand of wood-based industries 
(GOI 2014).

Environmentally, M. dubia enhances soil 
quality, biodiversity and acts as a carbon 
sink, making it suitable for reforestation and 
afforestation projects. Its adaptability to diverse 
climatic conditions and resistance to pests and 
diseases add to its appeal, providing a reliable 
option for farmers across varying climates in 
India. The increasing global demand for eco-
friendly and sustainable products has boosted the 
popularity of M. dubia, aligning with the growing 
emphasis on sustainable forestry and achieving 
the Sustainable Developmental Goals like SDG 
1 (No Poverty), SDG 5 (Gender Equality), SDG 
7 (Affordable and Clean Energy) and SDG 12 
(Responsible Consumption and Production). 
Advances in silvicultural practices and research 
which have improved cultivation methods, yield 
and quality, was further supported by extension 
services and knowledge dissemination by 
agricultural universities and research institutions 
(van Noordwijk et al. 2018, Arunachalam & 
Ramanan 2021). Together, these factors have 
contributed to the steady expansion of M. dubia 
cultivation in Kerala (Binu 2019), highlighting 
a strategic convergence of economic viability, 
environmental sustainability and enabling policy 
frameworks. The species’ fast growth, suitability 
for intercropping, and rising demand in timber-
based industries have made it an attractive choice 
for farmers and stakeholders alike. However, to 
ensure that this expansion is both sustainable 
and regionally appropriate, it is essential to 
identify and prioritise ecologically suitable areas 
for cultivation. In this context, ecological niche 
modelling emerges as a valuable tool, offering 
spatial insights into habitats that align with the 
species’ ecological requirements. By facilitating 
site-specific promotion, such modelling not only 
enhances productivity and resource use efficiency 
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but also helps in maintaining ecological integrity, 
thereby striking a balance between economic 
development and environmental conservation.

MATERIALS AND METHODS

Scope of Melia dubia

This tree species has garnered sufficient 
attention and scientific evidence for its 
multipurpose usage like timber, fodder as well 
as fuelwood in tropical countries like India. 
Additionally, the fast-growing nature of the tree 
provide advantageous position from the carbon 
sequestration point of view and thus, we foresee 
a growing interest on the tree. It is also evident 
from the increasing number of publications 
on this tree species which was assessed using 
keyword search “Melia dubia” in Google Scholar 
database (Figure 1) [accessed on 31 December 
2023]. Species occurrence records of M. dubia 
were gathered through field surveys across its 
natural range and supplemented with data from 
published literature. Based on dataset from the 
literature, we delineated the natural distribution 
range and conducted a systematic corridor 
survey. This approach facilitated targeted field 
observations, enabling comprehensive data 

collection and validation of spatial attributes 
within the designated region. All together 232 
occurrence data were used in the analysis. In 
the present study, we used baseline and future 
climate scenarios to understand and predict the 
distribution of M. dubia in Kerala. 

Baseline scenario

The baseline climate scenario refers to the 
historical climate data that serves as a reference 
point against which future climatic changes are 
measured. This involves using observed climate 
data over a past period, commonly 30 years, to 
establish a ‘normal’ climate state. For this, 19 
bioclimatic variables representing the current 
climatic conditions were used to delineate the 
niche of the M. dubia (Table 1). These variables 
represent annual trends in temperature and 
precipitation, encompassing aspects such as 
seasonality and climatic extremes. Such factors 
can place physiological limits on species, thereby 
influencing their spatial distribution (O’Donnell 
& Ignizio 2012). The bioclimatic variables for 
the present period are derived from long-term 
averages of monthly climate data, specifically 
minimum, mean and maximum temperatures, 
along with precipitation, covering the 30-year 

Figure 1	 Increasing number of publications on Melia dubia accessed from Google Scholar using the Publish 
or Perish software program (https://harzing.com/resources/publish-or-perish)
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span from 1970 to 2000 (Fick & Hijmans 2017) 
which was accessed from WorldClim database 
(https://www.worldclim.org/). 

Future climate scenarios

Future climate scenarios are projections of how 
the climate might change based on different 
assumptions about future greenhouse gas 
emissions, land use changes, technological 
advancements, and global socio-economic 

factors (Hewitt et al. 2021). These scenarios are 
plausible representations of the future based on 
specific Shared Socioeconomic Pathways (SSPs) 
or Representative Concentration Pathways 
(RCPs). They range from low-emission scenarios 
that assume significant mitigation efforts and 
sustainable development (e.g., SSP1-2.6) to 
high-emission scenarios that reflect continued 
dependence on fossil fuels and higher levels 
of economic growth without equivalent 
sustainability efforts (e.g., SSP5-8.5). 

Table 1    Overview of the 19 bioclimatic variables used 

Code Variable Name

Temperature-related Variables

BIO1 Annual Mean Temperature (°C)

BIO2 Mean Diurnal Range (°C)

BIO3 Isothermality (%)

BIO4 Temperature Seasonality (%)

BIO5 Max Temperature of Warmest Month (°C)

BIO6 Min Temperature of Coldest Month (°C)

BIO7 Annual Temperature Range (°C)

BIO8 Mean Temperature of Wettest Quarter (°C)

BIO9 Mean Temperature of Driest Quarter (°C)

BIO10 Mean Temperature of Warmest Quarter (°C)

BIO11 Mean Temperature of Coldest Quarter (°C)

Precipitation-related Variables

BIO12 Annual Precipitation (mm)

BIO13 Precipitation of Wettest Month (mm)

BIO14 Precipitation of Driest Month (mm)

BIO15 Precipitation Seasonality (%)

BIO16 Precipitation of Wettest Quarter (mm)

BIO17 Precipitation of Driest Quarter (mm)

BIO18 Precipitation of Warmest Quarter (mm)

BIO19 Precipitation of Coldest Quarter (mm)
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For the present study, the selection of 
climate models was methodically undertaken 
to gauge the impacts of climate change on 
the distribution of M. dubia in Kerala. The 
selection process involved a review of the latest 
Intergovernmental Panel on Climate Change 
(IPCC) reports to identify climate models from 
the Coupled Model Intercomparison Project 
Phase 6 (CMIP6) that have been validated for 
the Indian subcontinent (Kaur et al. 2023). 
To encompass a spectrum of potential climate 
futures, a suite of Shared Socioeconomic 
Pathways (SSPs) was employed which are 
designed to reflect different magnitudes of 
climate change based on varying greenhouse gas 
emissions trajectories. SSPs provide a framework 
to explore how global society, demographics, and 
economics might change over the next century. 
Under this, we selected two model classes 
viz., CANEMS and HADGEM with different 
scenarios to assess the distribution of M. dubia 
in response to climate change in the year 2050. 
These scenarios included CANEMS SSP126, 
CANEMS SSP245, CANEMS SSP370, CANEMS 
SSP585, HADGEM KL126, HADGEM KL245, 
and HADGEM KL585. The models were chosen 
based on their capacity to simulate key climatic 
factors such as monsoon dynamics, temperature, 
and precipitation patterns (Rajpoot et al. 2020), 
which are important for the ecology of M. dubia.   

The CANEMS model scenarios are based 
on the Shared Socioeconomic Pathways (SSPs) 
that represent different levels of greenhouse 
gas emissions and socioeconomic factors 
affecting climate change. CANEMS SSP126 
scenario envisions a sustainable future with a 
low greenhouse gas concentration pathway, 
aiming at <2 °C above pre-industrial levels of 
global warming. CANEMS SSP245 predicts a 
middle-of-the-road pathway which emissions 
peak around mid-century, with some efforts 
toward sustainability without additional climate 
policies. CANEMS SSP370 predicts a scenario 
with more fragmented world concepts and 
regional rivalry, leading to higher emissions 
due to less cooperation and medium mitigation 
efforts. While CANEMS SSP585, the highest 
greenhouse gas emissions pathway, represents 
a future with unchecked emissions and rapid 
economic growth driven by fossil fuels. The 
HADGEM scenarios are projections from the 
Hadley Centre Global Environment Model, 
signified by KL alongside the SSP numbers, 

indicating a specific configuration of the 
model used. HADGEM KL126 corresponds to 
the SSP126 scenario but uses the HADGEM 
model configuration, representing the same 
sustainable, low-emission future. HADGEM 
KL245 uses the HADGEM model to simulate the 
SSP245 pathway, reflecting a moderate approach 
to emissions with some policy implementation 
toward sustainability. While HADGEM KL585 
represent the SSP585 scenario, indicating a 
high-emission future with significant climate and 
ecological impacts (Jha & Jha 2021, Menezes et 
al. 2023).

Ecological niche modelling 

To model the ecological niche of M. dubia, we 
utilised MaxEnt software version 3.4.3. This 
tool predicts species distributions by correlating 
known occurrence points with environmental 
variables from the surrounding landscape 
(background). MaxEnt is widely recognised in 
ecological modelling for its robust performance 
and user-friendly graphical interface, which 
allows for automatic parameter tuning. Its 
consistent applicability and flexibility have 
made it a preferred choice in numerous peer-
reviewed studies  (Lantschner et al. 2019, Sillero 
& Barbosa 2021).

Model parameterisation

For model calibration, we selected 10,000 
background points and allowed up to 500 
iterations, with a convergence threshold set 
at 0.00001. To manage model complexity, 
we incorporated hinge, product, linear, and 
quadratic feature types. The risk of overfitting was 
minimised by applying the default regularisation 
multiplier of 1. To evaluate the consistency of the 
model, MaxEnt was used to perform 20 replicate 
runs through cross-validation. Model accuracy 
was determined using the Area Under the 
Curve (AUC) metric. The significance of each 
bioclimatic variable was examined using multiple 
approaches: variable contribution analysis, the 
jackknife method, and response curves. Variable 
contribution analysis helped in estimating the 
relative influence of each predictor on model 
performance. The jackknife approach assessed 
how the inclusion or exclusion of individual 
variables affected the model’s gain. Meanwhile, 
response curves provided insights into how 
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each variable influence habitat suitability across 
different values along the climatic gradient.

Model performance

The AUC is statistical measure that evaluates how 
well the model distinguishes between presence 
and absence, the performance of the model 
assessed based on it. The Receiver Operating 
Characteristic (ROC) curve is a graphical plot 
where the true positive rate (sensitivity) is 
plotted on the Y-axis against the false positive 
rate (1-specificity) on the X-axis at various 
threshold settings. The AUC value is the area 
under this ROC curve, with a range from 0 to 1. 
An AUC value of 0.5 suggests no discrimination 
(equivalent to random guessing), while a value 
of 1.0 indicates perfect discrimination, meaning 
the model perfectly separates presence and 
absence locations. 

Model thresholding

The current distribution of M. dubia was 
predicted based on the ‘Cloglog’ result 
which were transformed into binary maps for 
interpretation of climatic suitable and unsuitable 
areas with condition of applying threshold rule 
of 10-percentile training presence. The ‘Cloglog’ 
probabilities of species presence translates 
the continuous probabilities into binary maps 
indicating suitable or unsuitable habitats. While, 
the 10-percentile training presence threshold 
rule involves setting the threshold at a value for 
which 90% of the occurrence records used to 
train the model are predicted to be suitable. The 
rationale behind this approach is to minimise 
omission errors which occur when the model fails 
to predict an area as suitable where the species is 
known to be present. By using the 10-percentile 
threshold, researchers accept a certain level of 
commission error, i.e., predicting unsuitable 
areas as suitable, to reduce the risk of failing 
to identify areas that could potentially support 
the species. In the context of M. dubia, a species 
with economic and ecological importance, 
the application of the ‘10-percentile training 
presence threshold rule’ ensures that the binary 
map reflects a comprehensive potential habitat. 
It is important, as the goal is to identify all areas 
that could support reforestation or cultivation 

efforts, ensuring that the suitability map is 
inclusive of all environments where M. dubia 
could potentially grow under current, as well as 
future, climate scenarios. 

Assessment of climatic novelty under 
future scenarios

The assessment of climatic novelty under future 
scenarios typically involves the analysis of how 
current climatic conditions might diverge from 
future conditions under various climate change 
scenarios. In the present study, climatic novelty 
under future scenarios was assessed using the 
Multivariate Environmental Similarity Surfaces 
(MESS) and most dissimilar variables (MoD) 
analysis of environmental variables within the 
Maxent framework (Rajpoot et al. 2020). The 
MESS analysis in MaxEnt involves comparing a 
set of environmental variables, e.g., temperature 
and precipitation under current conditions to 
the projected values of these variables under 
future climate scenarios. The result is a surface or 
map showing areas of similarity and dissimilarity. 
Areas with high dissimilarity scores indicate 
regions where the future climate is significantly 
different from the current climate, suggesting 
these areas may experience novel climatic 
conditions. While the MoD analysis is focused 
on identifying the environmental variables that 
contribute most to the dissimilarity between 
current and future conditions. 

Climatic niche characterisation

Climatic niche characterisation is a critical 
process in understanding the relationship 
between a species and the climatic variables 
that define its habitat. For M. dubia, this 
characterisation was performed through variable 
contribution analysis, jackknife test of variable 
importance, and analysis of response curves that 
assess the influence of various climatic variables 
on the species’ distribution. The variable 
contribution analysis involves evaluating the 
individual contribution of each climatic variable 
to the predictive power of the niche model. 
In the context of MaxEnt modeling, variable 
contribution is quantified as the gain in model 
performance, i.e., increase in AUC value when 
the variable is included. By comparing the gains 



Journal of Tropical Forest Science 37(3): 356–371 (2025) Suresh Ramanan S et al.

362©Forest Research Institute Malaysia

across all variables, we can determine the climatic 
factors that are most significant in defining the 
distribution of M. dubia. 

The jackknife test of variable importance is 
a resampling technique used to estimate the 
robustness and importance of each variable 
in the model independently. By systematically 
leaving out each variable from the model and 
then re-evaluating the model’s performance, 
the jackknife test identifies variables that are 

unique predictors of the species’ presence. A 
variable that causes a significant decrease in 
model performance when omitted is deemed 
to have high importance. Conversely, if model 
performance remains stable or improves when a 
variable is removed, that variable may be of lesser 
importance or redundant due to correlation 
with other variables.

The response curves depict the relationship 
between the probability of species presence and 

Figure 2	 The response curves illustrate how predicted suitability is influenced by individual variables, while 
also accounting for interactions with other correlated variables. The red line represents the average 
response across 20 replicate model runs, and the blue shaded area indicates the range of one 
standard deviation above and below the mean
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each climatic variable. They show how changes 
in a variable affect the likelihood of finding 
M. dubia in a particular area. For instance, a 
response curve might reveal that the probability 
of presence increases with temperature up to 
a certain point before declining, indicating an 
optimal temperature range for the species. These 
curves are crucial for identifying the thresholds 
and tolerances of M. dubia to different climatic 
conditions.

RESULTS

Model performance

The model demonstrated strong predictive 
ability, with mean training and test AUC values of 
0.95 ± 0.052 SD and 0.94 ± 0.026 SD, respectively. 
These elevated AUC scores indicate robust and 
reliable model performance.

Characterisation of the climate niche

The examination of variable importance and the 
corresponding response curves elucidates the 
climatic preferences of M. dubia, pinpointing 
critical climatic variables that delineate its niche. 
The species demonstrates a propensity for 
specific moisture conditions, favoring regions 
where the precipitation during the driest 
quarter ranges approximately between 220–250 
mm. Similarly, its distribution is associated with 
the precipitation during the warmest quarter, 
which lies in the vicinity of 160–170 mm, and the 
precipitation of the coldest quarter, which spans 
a broader range of 100–200 mm. Additionally, 
the niche is characterised by a preference for 
isothermality, which measures the day-to-night 
temperature oscillation relative to the summer-to-
winter oscillation, with an optimal range around 
56–57%. The upper thermal limit of the species’ 
niche is marked by the maximum temperature 
of the warmest month, which is around 31 °C. 
These climatic variables collectively sketch the 
essential contours of the climatic niche and 
inform the potential geographic distribution of 
M. dubia within Kerala (Figure 2). 

The analysis of variable contribution showed 
that the precipitation of the driest quarter (19.4%) 
has the highest rank followed by precipitation 
of the warmest quarter (13%), precipitation of 

coldest quarter (12.8%), isothermality (12.8%) 
and maximum temperature of warmest month 
(12.2%). These variables account for >70% 
predicting the potential climatic niche of M. 
dubia. The jackknife analysis showed that the 
isothermality contributed for the highest model 
gain (0.45) when used in isolation, while the 
precipitation of the driest quarter decreased the 
gain predominately by 1.50 when omitted from 
the analysis (Table 2). This clearly indicates the 
influence of these variables on the distribution 
of the species compared to other variables 
(Figure 3).

The climatic niche of M. dubia is defined 
by a range of climatic parameters. The mean 
annual temperature conducive for the species 
is between 22–24 °C. During the warmest 
quarter, the suitable mean temperature lies 
between 25–27 °C, while the coldest quarter sees 
a mean temperature range of 21–23 °C. The 
species thrives in maximum temperatures of the 
warmest month ranging from 31–34 °C, with the 
minimum temperature of the coldest month 
falling between 16–18 °C. The temperature 
annual range that supports M. dubia is between 
11.5 °C and 15.5 °C, with a mean diurnal range of 
7.4–7.6 °C. Precipitation also plays a significant 
role, with annual figures ranging from 1100–2500 
mm. The wettest month typically receives 700–
800 mm of rainfall, while the driest month has 
55–60 mm. Further delineating the precipitation 
profile, the wettest quarter contributes 1400–
1600 mm, the driest quarter 230–250 mm, the 
warmest quarter 170–180 mm, and the coldest 
quarter 1000–1300 mm. These climate-related 
variables play a crucial role in identifying areas 
within the state that are currently suitable for 
the growth of M. dubia.

Current distribution of climatically 
suitable areas

According to the MaxEnt model, about 2.56% 
of Kerala’s total area is classified as highly 
suitable for M. dubia, with 3.33% identified 
as moderately suitable and 7.43% as having 
low suitability. District wise, Palakkad (1.09%), 
Wayanad (057%) and Thrissur (0.53%) have 
more suitability compared to the other districts 
of Kerala. 
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Future distribution of novel climates

Results from the MESS analysis suggest that 
large portions of the current M. dubia range 
in Kerala are unlikely to experience novel 
climatic conditions in the future. However, 
regions projected to undergo climatic novelty 
are primarily associated with extreme values 
in annual mean temperature and the mean 
temperature during the coldest quarter (Figure 
4).

Future potential distribution areas

The climate models CanESM5 and HADGEM3-
GC31-LL projected differing patterns in the 
future potential distribution of M. dubia across 
Kerala (Figure 5). The CanESM5 model 
indicated a notable expansion in climatically 

suitable zones, covering approximately 3% of 
the state’s total area (Figure 6). In contrast, the 
HADGEM3-GC31-LL model also projected an 
increase in suitable habitat but within a narrower 
range of about 2–4% compared to present 
conditions (Figure 7). While the CanESM5 
model showed a consistent rise in highly suitable 
areas over time, the HADGEM3-GC31-LL model 
reflected a more variable trend.

DISCUSSION

As the MaxEnt model output indicated, 2.56% 
of the total geographical area of the Kerala state 
is highly suitable for the species studied—M. 
dubia. While assessing the impact of climate 
change, the outputs generated from such 
modelling exercises will play a crucial role in 
developing spatial maps. These maps will serve 

Table 2	 Summary of variable contribution analysis and jackknife test results for predictor importance

Bioclimatic variable 
codes

Analysis of variable contributions Jackknife values of regularised  
training gain

Percent 
contribution

Permutation 
importance

Without  variable With only variable

kl_clip30s_bio_1 3.60 0.10 1.69 0.35

kl_clip30s_bio_2 4.60 4.50 1.67 0.10

kl_clip30s_bio_3 12.80 11.60 1.64 0.45

kl_clip30s_bio_4 6.00 0.30 1.69 0.31

kl_clip30s_bio_5 12.20 3.70 1.68 0.28

kl_clip30s_bio_6 0.70 - 1.69 0.19

kl_clip30s_bio_7 0.60 1.40 1.69 0.31

kl_clip30s_bio_8 0.70 1.10 1.69 0.30

kl_clip30s_bio_9 - - 1.70 0.26

kl_clip30s_bio_10 4.20 2.10 1.67 0.30

kl_clip30s_bio_11 0.50 0.40 1.69 0.43

kl_clip30s_bio_12 0.90 1.00 1.69 0.28

kl_clip30s_bio_13 2.40 8.20 1.68 0.24

kl_clip30s_bio_14 2.20 23.60 1.65 0.07

kl_clip30s_bio_15 0.80 - 1.70 0.14

kl_clip30s_bio_16 2.60 0.20 1.70 0.21

kl_clip30s_bio_17 19.40 25.90 1.50 0.32

kl_clip30s_bio_18 13.00 9.30 1.67 0.39

kl_clip30s_bio_19 12.80 6.70 1.65 0.36
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Figure 3	 The mapped occurrence points of Melia dubia are displayed over the modeled climatic suitability 
surface for the present period in Kerala. Distinct color zones indicate areas of climatic suitability, 
determined by applying the ten-percentile threshold to the average probability output from the 
model
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Figure 5	 Percentage Area statistics of the predicted shift in climatic ranges of Melia dubia in Kerala under 
different SSP of the two climate models namely CanESM5 and HADGEM3-GC31-LL  

as valuable tools for identifying vulnerable 
areas, prioritising regions for intervention, 
and planning targeted strategies. As a result, 
they will support informed decision-making 
for both conservation initiatives and effective 
ecological restoration efforts (Adhikari et al. 
2018, Adhikari et al. 2019). The result of the 
Multivariate Environmental Similarity Surfaces 
(MESS) analysis also indicates that the natural 
habitat of M. dubia might be impacted. 

Earliest botanical and forestry literature 
mentions that M. dubia occurs in the tropical 
moist and dry deciduous forests of the Western 
Ghats (Champion & Seth 1968). Both these 
forest types are prevalent in region experiencing 
mean annual temperatures of 24–27 oC and 
23.5–29 oC and a rainfall of about 1200–3000 
mm and 750–1900 mm, respectively. This 
provides both the upper and lower thresholds 
for defining the climatic niche of M. dubia, 
helping to delineate the range of environmental 
conditions within which the species thrives. 
Also, the bioclimatic variable limits as indicated 
in the figure corroborate with temperature and 
precipitation thresholds of the tropical moist and 
dry deciduous forest. The plantation trails of M. 

dubia indicated that the irrigation requirement 
if the rainfall is less than 1000 mm yr-1 (Ramanan 
et al. 2023).  The MaxEnt models have indicated 
that there will be declining trend in the suitability 
of the site having precipitation of less than 400 
mm during the warmest quarter, and less than 
1000 mm during the coldest quarter. 

The model tentatively indicates that 2.57% of 
the geographical area of the state may be suited 
for the M. dubia cultivation and the area is also 
projected to increase in future climatic scenario. 
This species is believed to be originated from the 
Western Ghats region and the model projections 
indicate the high adaptability of the species. 
The presence of multiple peaks in temperature 
response curve indicate that the species can 
thrive in more than one temperature range or 
else the species may have different populations 
that are adapted to different conditions, thus 
showing multiple preferred conditions. Given 
that there is ambiguity in the Melia species 
occurring in the North and North-eastern 
regions as separate species or ecotypes, there is 
need for niche differentiation or niche overlap 
works to be carried out for the whole country. 
This sort of work demonstrates that niche-based 
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Figure 6	 Future potential distribution area extent of Melia dubia in Kerala predicted by different SSPs of the 
CanESM5 and HADGEM3-GC31-LL climate model  
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Figure 7	 Future potential distribution area extent of Melia dubia in Kerala predicted by different RCPs of the 
HADGEM3-GC31-LL climate model.
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analyses can aid not only to identify suitable 
areas for cultivation of a particular species but 
also pertinently point out the suitable location 
of the germplasm/clones developed based on 
their native geographic distribution occurrence. 

In agroforestry, niche modelling has been 
effectively applied to assess the suitability of 
individual tree species as well as combinations 
of woody perennials. A notable example is the 
ensemble-based modelling approach used in 
the creation of the “Suitability of Key Central 
American Agroforestry Species under Future 
Climates: An Atlas” (Sousa et al. 2017). This work 
provides a comprehensive spatial assessment of 
54 important agroforestry tree species across 
seven Central American countries—Belize, 
Guatemala, El Salvador, Honduras, Nicaragua, 
Costa Rica and Panama. The atlas not only maps 
the current suitable areas for these species but 
also projects potential shifts in their distributions 
under future climate scenarios.

CONCLUSIONS

Agroforestry is inherently the combination of 
different trees and crops together and therefore, 
collating the niche of different species together 
will aid in predicting the suitable geographic 
areas for different agroforestry models. As there 
is due possibility for extrapolating the climate 
change impact, there is way to predict the 
viability of different agroforestry models in the 
upcoming years (Ranjitkar et al. 2016). This sort 
of work can enable the policy makers to reframe 
the existing agroforestry policies and tree-
marketing guidelines to suit a particular species. 
From the agroforestry perspective of farmer’s 
field, it has always been that introduction 
of new tree species having better economic 
returns. For instance, Indian Sandalwood tree 
(Santalum album) is native to southern India, 
specifically the Deccan plateau. However, it 
is now cultivated in many parts of the country 
apart from its native distribution. There are a 
lot of speculations about the growth and yield 
from these new cultivation areas (Sandeep et al. 
2020). In this regard, the ENM approach can 
tentatively provide a clear recommendation on 
species introduction. A similar sort of ENM work 
carried out in Nepal has provided inputs to the 
forest department to avoid Alnus nepalensis in the 
north-eastern part and to replace it with Alnus 

nitida in combination with cardamom or tea as 
intercrop (Rana et al. 2018). Given the Kerala 
agricultural landscape as well as economical 
dynamics, this species can be an apt choice for 
plantation sector and agroforestry provided the 
value-chain are developed in the state. Results 
from niche modelling when coupled with fuzzy 
logic model, have also been used to determine 
the optimal tree crop combination. This 
kind of results, however, need post-modelling 
data processing to make it more reliable and 
adaptable (Ranjitkar et al. 2021).  
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