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INTRODUCTION

Brazil is the largest producer and consumer 
of charcoal in the world, mostly consumed by 
the steel and iron alloy industry. To meet the 
industrial demand for charcoal, high quality 
and fast growth materials are required, between 
five and seven years of cutting cycle. The genus 
Eucalyptus have been found suitable for such 
use, besides presenting great adaptation to 
different edaphoclimatic conditions (Couto 
& Müller 2013), making the genus interesting 
for application in Brazil where there is great 
climatic variability. In addition, Brazil stipulated 
a 2020 goal of using only planted forest plants 
for charcoal production, in order to reduce 
deforestation of the native forest and to have 
product uniformity, since planted forests provide 
homogeneous materials. 
	 In Brazil, total Eucalyptus plantation area is 
5.56 million hectares, with the largest planted 
areas in the states of Minas Gerais, São Paulo 
and Mato Grosso do Sul (IBÁ 2015). The most 
widespread species are E. grandis, E. saligna, E. 
urophylla and the hybrid E. grandis x E. urophylla.
Several authors have related wood quality to 
charcoal quality, considering physical and 
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chemical characteristics and their correlations 
(Oliveira et al. 2012, Protásio et al. 2013, Vale 
et al. 2010). Basic wood density is considered 
as one of the most fundamental characteristics 
for quality evaluation of the final product. The 
structural chemical composition of wood affects 
the yields of charcoal, pyroligneous liquor and 
non-condensable gases in the final product. 
Besides, the proximate chemical composition 
determines carbon and mineral availability, 
directly affecting the reduction process of metal 
alloys.
	 Therefore, it is necessary to know the wood 
quality and its correlations with charcoal, so 
that superior species and clones are selected for 
charcoal production. Thus, the objective of this 
study was to evaluate the wood quality of five 
Eucalyptus species and determine the relationship 
with charcoal production.

MATERIALS AND METHODS

Five different raw firewood were used for this 
study, E. benthamii, E. dunnii, E. grandis, E. saligna 
and a hybrid of E. urophylla x E. grandis. At the 
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time of collection, the plants were seven years 
old and nine plants of each species were selected. 
Firewood comes from commercial plantations of 
Stora Enso Florestal, located in the state of Rio 
Grande do Sul in the municipalities of Alegrete 
and São Francisco de Assis. The climate of the 
region, according to the Koppen classification, 
is Cfah—subtropical mesothermic, constantly 
humid, with months of cold weather, frost from 
May to August, and intense heat predominant in 
January and February. The soil of the study area is 
classified as dystrophic red argisol. Table 1 shows 
the average planting data used. 
	 Six discs, with approximately 10 cm height, 
were taken from the samples, base (10 cm of the 
soil), DHB (1.30 m of the soil), 25%, 50%, 75% 
and 100% with respect to the commercial height 
of the tree, considered up to the diameter of 6 
cm with bark. After the collection, the discs were 
packed in plastic bags and sent for specimen 
preparation. Each disc was sectioned into four 
wedges from which one pair of opposing wedges 
was forwarded for the determination of basic 
density, from the other pair, a wedge was destined 
to specimen preparation for pyrolysis, and the 
remaining wedge was minced and milled in a 
Wiley mill. A sample consisting of the milled 
material of all sampled heights was prepared and 
sieved using 35- and 60-mesh sieves (Trugilho 
2009). The fraction retained in the 60-mesh sieve 
was sent for determination of extractives, lignin, 
high heating value and proximate analysis. 
	 In the determination of basic density, the 
precepts of standard NBR 11941 for hydrostatic 
balance were followed (ABNT 2003). For each 
height, the arithmetic mean of the two opposite 
wedges was considered, and for the tree, the 
arithmetic mean of all heights sampled was 
considered (Trugilho 2009). 
	 For carbonisation, the wedge was transformed 
into chips (4 × 4 × 1 cm) and a sample consisting 

of all heights was oven dried at 103 ± 2 °C. After 
drying, the sample (100 g) was carbonised 
in a muffle furnace with a heating rate of  
2 °C min-1, from 100 °C to 450 °C for 30 minutes. 
The pyroligneous liquor was collected and 
non-condensable gases were released into the 
atmosphere. The charcoal and pyroligneous 
liquor yields were determined by the ratio of 
charcoal mass produced to dry wood mass at 
the beginning of the process. Non-condensable 
gases yield was calculated by the difference 
between wood mass and the yield of the above 
two. The apparent relative density of charcoal 
was determined in the same way as for basic 
wood density. 
	 The standard NBR 14853 and 7989 was used 
to determine the extractive content and lignin 
content (Klason) of the wood (ABNT 2010 a,b). 
Holocellulose content was determined by the 
difference of the sum of the two above. The 
high heating value of wood and charcoal was 
determined according to standard NBR 8633, 
using an adiabatic calorimetric pump (ABNT 
1984). Proximate chemical analysis was carried 
out in charcoal for the determination of volatile 
materials (VM), fixed carbon (FC) and ash (A), 
according to standard NBR 8112 (ABNT 1986).
	 The energy density of wood was calculated 
from the basic density and high heating value 
of wood, according to Equation 1, while the 
energy density of charcoal was calculated from 
the apparent relative density of charcoal and its 
high heating value, according to Equation 2.

	 EDw = Db * HHVw 	 (1)

where, EDw = energy density of wood (Gcal m-3), 
DB = basic density of wood (kg m-3) and HHV = 
high heating value of wood (kcal kg-1).

	 EDc = Dar * HHVc	 (2)

Table 1	 Dendrometric data 
 

Material Spacing (m) DHB * (cm) TH ** (m) Origin

Eucalptus benthamii 3.5 × 2.0 16.50 29.80 Alegrete

Eucalptus dunnii 3.5 × 2.0 17.49 23.52 Alegrete

Eucalptus grandis 3.5 × 2.0 18.09 26.05 Alegrete

Eucalptus saligna 3.5 × 2.5 19.97 28.36 São Francisco de Assis

Eucalptus  urograndis 3.5 × 2.5 18.69 30.11 Alegrete

*Diameter at 1.30 m from the soil, ** total height (SEFRGDS, 2014)
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where EDC = energy density of charcoal (Gcal m-3), 
Dra = apparent relative density of charcoal  
(kg m-3) and HHV = high heating value of 
charcoal (kcal kg-1).
	 The fixed carbon yield and energy yield were 
also calculated, according to Equations 3 and 
4, respectively, where the former represents the 
amount of fixed carbon retained in the final 
product and the latter represents the energy 
fraction of the wood retained in charcoal.
		
	 FCY = CY * FC	 (3)

where FCY = fixed carbon yield (%), CY = 
charcoal yield (%) and FC = fixed carbon content 
of charcoal (%).

	 	
	 EY = CY * 

HHVc

HHVw

	 (4) 

where EY = energy yield (%), CY = gravimetric 
yield in charcoal (%), HHVc and HHVw = 
high heating values of charcoal and wood, 
respectively.
	 For stat ist ical  analysis ,  a  completely 
randomised design was used, having the species 
and nine replications (trees) as a variation factor. 
An analysis of variance was performed and the 
means were statistically compared by Tukey test 
at 5% probability when a significant difference 
was found. To perform the statistical analysis, the 
software R 3.1.2 was used (R CORE TEAM 2014). 

RESULTS AND DISCUSSION

The species factor had a significant effect on 
all the properties evaluated in the chemical 
composition of wood, except for the high heating 
value of wood (Table 2). The results observed for 
high heating value were similar to those found 
by Eloy (2015), studying E. grandis in different 

spacings. Carneiro et al. (2014) studied Eucalyptus 
sp. clones and found HHV values between  
4542 kcal kg-1 and 4633 kcal kg-1. This variable 
is of interest for wood energy use, considering 
that it represents the amount of heat released 
during combustion (Santos 2010). It is observed 
that wood with higher holocellulose contents 
have a tendency to decrease charcoal yield 
(Protásio et al. 2012). This fact is associated with 
the lower thermal stability of hemicelluloses and 
cellulose in relation to lignin (Raad et al. 2006). 
Lower holocellulose contents are associated 
with a higher lignin content, since the former 
is calculated by the difference in relation to the 
latter (Vale et al. 2010, Costa et al. 2014).
	 The extractive contents and lignin values 
found in this study differed from those found 
by Costa et al. (2014) for hybrid E. urograndis, 
aged 3 to 7 years. The authors found extractive 
contents between 8 and 10%, and for lignin, 
lower than 22%. However, Oliveira et al. (2012) 
found a maximum extractive content of 2.29% 
and a lignin content of more than 30%  for the 
same hybrid. Rocha et al. (2016) found higher 
lignin values, indicating possible influence of 
the spacing used. Regarding structural chemical 
composition, the five species presented a median 
potential as a bioreducer, showing lower lignin 
contents than those found in literature for 
ideal materials, however higher than 25%.  
The ash content of the studied wood was low, a 
characteristic desired for charcoal production, 
since it contributes to lower mineral content in 
the final product.
	 Table 3 shows the mean high heating value 
and proximate chemical composition of charcoal. 
A significant effect of species was observed for the 
contents of volatile materials and ash. The small 
variation between charcoal characteristics is 
related to the low influence of species over these 
properties and is explained by the fact that the 

Table 2 	 Mean values of high heating value (HHV) and chemical composition of the evaluated wood

Species HHV EXT LIG HOLO Ash

Eucalptus benthamii 4626 a 3.69 a 29.27 a 66.64 b 0.38 a

Eucalptus dunnii 4660 a 3.21 a 25.99 b 70.41 a 0.38 a

Eucalptus grandis 4532 a 1.20 b 26.60 ab 71.90 a 0.29 ab

Eucalptus saligna 4661 a 3.14 a 26.62 ab 79.95 a 0.27 b

Eucalptus urograndis 4585 a 1.27 b 26.16 b 72.21 a 0.34 ab

HHV = high heating value (kcal kg-1), EXT = total extractive content (%), LIG = insoluble lignin content (%), HOLO = 
holocellulose content (%), Ash = ash content (%)
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final carbonisation temperature was constant, 
which was also found by Protásio et al. (2013, 
2014).
	 Mean contents of fixed carbon, higher than 
75%, combined with low average ash contents 
(< 1%), qualify the charcoal produced from the 
five species as potential reducing agent in the 
steel sector (Protásio et al. 2014). The similarity 
between high heating value found for each plant 
species is related to the fixed carbon content, as 
these two characteristics are highly dependent on 
each other (Vale et al. 2010, Reis et al. 2012). The 
ash content of charcoal used in the steel industry 
can affect steel quality, resulting in cracks in 
metal alloys (Vital 2013).
	 The small variation between charcoal 
characteristics is related to the low influence 
of species over these properties, and the final 
carbonisation temperature was constant, as also 
found by Protásio et al. (2013, 2014). In a study 
with 7-year-old E. urophylla, Reis et al. (2012) 
found average ash contents of less than 0.81% 
and maximum content of volatile materials, 
74.46%. Thus, in relation to proximate chemical 
composition and high heating value, it is 
suggested that charcoal of all species studied can 
be indicated for bioenergy and steel use. 
	 Table 4 shows the values of wood basic density 
and apparent relative density of charcoal, as well 
as energy density of both materials. There was a 
significant difference in the four characteristics of 
the species. The species E. dunnii had the highest 
average value for basic wood density, resulting 
in higher energy density. For each species, the 
differences in density were the same as energy 
density. There was no significant difference in 
high heating values between the species. Energy 
density is a result of the product between basic 
wood density and its respective heating value. 

Therefore, it can be stated that basic wood density 
is an important tool for the selection of materials 
for energy purposes.  The density of wood can 
be influenced by spacing and the age of planting 
(Pillai et al. 2013, Rocha et al. 2016, Pertiwi et al. 
2017).
	 In relation to energy density of wood, the 
species E. grandis presented lower values than 
those reported in literature, even at lower ages. 
Protásio et al. (2013) found values between 2.16 
and 2.38 Gcal m-3, while Eloy (2015) found values 
in the range of 1.73 to 1.88 Gcal m-3, similar to 
this study, but in younger material. The apparent 
relative density of charcoal was similar to basic 
wood density, as confirmed by Vale et al. (2010) 
and Protásio et al. (2013). A low reduction in 
charcoal density was observed for E. benthamiie 
and E. dunnii in wood, which may be related 
to the total extractive contents of these species 
(Costa et al. 2014). 
	 Regarding gravimetr ic  y ie lds  of  the 
carbonisation process, a significant effect of 
species was observed in charcoal and pyroligneous 
liquor, while non-condensable gases did not show 
a significant effect (Figure 1). Higher yields in 
charcoal are better, as process yield increases, 
and the use of wood in charcoal kilns and the 
amount of final product is higher (Neves et 
al. 2011). According to Protásio et al. (2013), 
species with higher yields in pyroligneous liquor 
and lower yields in non-condensable gases are 
environmentally advantageous, contributing to 
lower emission of polluting gases. Nones et al. 
(2015) found charcoal yields of 34 and 36% for E. 
benthamiide, at 5 and 13 years of age, respectively, 
similar to those found in this study. On the other 
hand, Lima et al. (2007) studied the same species, 
but at 6 years of age, and observed a charcoal 
yield of 34.86%, slightly lower than the average 

Table 3	 Mean values of high heating value and proximate chemical composition of 
charcoal for the evaluated species

Species HHV FC VM Ash

Eucalptus benthamii 7603 a 77.80 a 21.15 ab 1.04 b

Eucalptus dunnii 7475 a 78.56 a 19.78 b 1.65 a

Eucalptus grandis 7505 a 76.59 a 22.21 a 1.19 ab

Eucalptus saligna 7395 a 75.95 a 23.21 a 0.83 b

Eucalptus urograndis 7490 a 78.06 a 20.92 ab 1.01 b

HHV = high heating value (kcal kg-1), FC = fixed carbon content (%), VM = volatile materials content 
(%), Ash = ash content (%)
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value found in this study. It is worth noting that, 
in this study, the final carbonisation temperature 
was 500 °C. For the hybrid E. urograndis, Oliveira 
et al. (2012) found yields of 33.5% for charcoal, 
38% for pyroligneous liquor and 28.5% for non-
condensable gases. Since there was no significant 
difference in the mean high heating value and 
fixed carbon content of charcoal among species, 
charcoal yield was the predominant property 
in the differentiation between species for fixed 
carbon and energy yields. Thus, a significant 
effect of species was observed for both properties 
(Figure 2).
	 The species E. benthamii had the highest 
yields in energy and fixed carbon. Despite the 
highest basic wood density and apparent relative 
density of charcoal, E. dunnii had a negative 
performance, showing the lowest charcoal 

yields, fixed carbon and energy. The lower lignin 
content in the wood of this species resulted in 
lower coal yield. Lignin is the most thermally 
stable compound in wood (Basile et al. 2017). 
The average values for fixed carbon yield found 
in this study were similar to those found by Neves 
et al. (2011), Assis et al. (2012) and Protásio et 
al. (2013), with the exception of E. dunnii and E. 
grandis, which presented lower FCY. In general, 
materials with higher yields in fixed carbon and 
energy are in accordance with those required 
for charcoal production. The fixed carbon yield 
represents the amount of carbon present in wood 
and is retained in charcoal, thus, it is influenced 
by elemental components present in the biomass 
(ASSIS et al. 2012). Therefore, biomass with 
higher fixed carbon yields are those that mostly 
retain carbon, a property that is desirable in 

Table 4	 Mean values for basic wood density, apparent relative density of charcoal 
and energy density

Species DB DEm DRA DEc

Eucalptus benthamii 493 b 2.28 b 415 a 3.16 a

Eucalptus dunnii 541 a 2.52 a 422 a 3.15 a

Eucalptus grandis 411 c 1.86 c 209 c 1.57 c

Eucalptus saligna 472 b 2.20 b 216 c 1.60 c

Eucalptus urograndis 465 b 2.13 b 299 b 2.24 b
 

DB = wood basic density (g cm-³), DEm = energy density of wood (Gcal m-3), DRA = apparent 
relative density of charcoal (g cm-³), DEc = energy density of charcoal (Gcal m-3)

Figure 1     Average gravimetric yields in charcoal, pyroligneous liquor and non-condensable gases in Eucalptus spp. 
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bioreducers, just as the energy yield represents 
the amount of energy of the raw material (wood) 
that is stored in the final product (charcoal).

CONCLUSIONS

Based on the results, it can be concluded that, 
among the studied species, E. benthammi is the 
most suitable for charcoal production, with 
higher yield in charcoal, fixed carbon and energy. 
Regarding wood properties, density cannot be 
used as the only parameter for determining 
material selection. Fixed carbon content and 
charcoal yield should also be considered, 
although a denser wood produces a denser 
charcoal.  For the carbonisation conditions used, 
with the exception of density, charcoal quality was 
not influenced by species. 
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