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EDIRIWEERA S, PATHIRANA S, DANAHER T & NICHOLS D. 2014. LiDAR remote sensing of structural 
properties of subtropical rainforest and eucalypt forest in complex terrain in north-eastern Australia. 
LiDAR remote sensing can be considered a key instrument for studies related to quantifying the vegetation 
structure. We utilised LiDAR metrics to estimate plot-scale structural parameters of subtropical rainforest 
and eucalypt-dominated open forest in topographically dissected landscape in north-eastern Australia. This 
study is considered an extreme application of LiDAR technology for structurally complex subtropical forests 
in complex terrain. A total of 31 LiDAR metrics of vegetation functional parameters were examined. Multiple 
linear regression models were able to explain 62% of the variability associated with basal area, 66% for mean 
diameter at breast height, 61% for dominant height and 60% for foliage projective cover in subtropical 
rainforest. In contrast, mean height (adjusted r2 = 0.90) and dominant height (adjusted r2 = 0.81) were 
predicted with highest accuracy in the eucalypt-dominated open canopy forest. Nevertheless, the magnitude 
of error for predicting structural parameters of vegetation was much higher in subtropical rainforest than 
those documented in the literature. Our findings reinforce that obtaining accurate LiDAR estimates of 
vegetation structure is a function of the complexity of horizontal and vertical structural diversity of vegetation. 
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INTRODUCTION

Light Detection and Ranging (LiDAR) is an 
active remote sensing technique to assess 
vegetation due to its ability to retrieve detailed 
three-dimensional profiles of vegetation structure 
(Lefsky et al. 1999). LiDAR systems utilise laser 
pulses to scan and sample objects on or above 
the surface of the earth. The data consist of a 
set of laser returns (points) that are accurately 
and precisely georeferenced in three dimensions 
(Baltsavias 1999). Continued technical advances 
of LiDAR and its decreasing cost have resulted in 
increased use of this technology for forestry and 
ecological studies (Gatziolis et al. 2010).
 The extraction of estimates of structural 
components of vegetation (e.g. height, average 
stem density, aboveground biomass) using LiDAR 
data is often based on LiDAR metrics or statistical 
measures from the distribution of laser data 
points. These LiDAR metrics include maximum 

heights, mean heights, height percentiles, 
standard deviations of the canopy height and 
proportions of laser penetration through the 
canopy, which are extracted either from raw 
laser points or interpolated grid corresponding 
to a canopy height model. Several studies have 
employed LiDAR metrics in conjunction with 
regression equations to estimate plot-scale tree 
height, basal area, stem density, timber volume, 
crown length and stem diameter. 
 To date, most evaluation of LiDAR for 
characterising vegetation structure has been 
carried out with relatively simple structures of 
vegetation and flat terrain in plantations and 
coniferous or temperate forests (Næsset 2002, 
Næsset & Okland 2002, Jensen et al. 2006, 
Heurich & Thoma 2008). These conditions 
generally facilitate precise characterisation of 
the biophysical attributes of vegetation structure 
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using LiDAR. However, the complexity of 
vegetation structure and dissected topography 
in most subtropical and tropical forested area 
does not allow for precise characterisation 
of vegetation structure using discrete return 
LiDAR. Despite numerous publications on 
structural assessment of vegetation using small 
footprint LiDAR, there are few studies relating 
to the application of LiDAR for characterising 
vegetation structure with multiple layered, 
closed canopy subtropical rainforests in dissected 
topography (Zhang et al. 2011) in Australia. 
Therefore, the main objective of our study 
was to evaluate the use of different discrete-
return LiDAR metrics for estimating plot-scale 
structural parameters including mean tree 

height, dominant tree height, mean diameter at 
breast height (dbh), dominant dbh, mean basal 
area, foliage projective cover and stem density of 
closed canopy subtropical rainforest and open 
canopy eucalypt-dominated forest.  

MATERIALS AND METHODS 

Study area

Two study areas were selected in north-
eastern New South Wales (NSW), Australia  
(Figure 1) including the Richmond Range 
National Park (RRNP) (28.69° S, 152.72° E) and the 
Border Ranges National Park (BRNP) (28.36° S,  
152.86° E). The elevation of RRNP study area 

Figure 1 Location map of Border Range National Park (BRNP) and Richmond Range National Park (RRNP)
plots and LiDAR acquisition areas, New South Wales; CHM = canopy height model

Field plots

CHM—BRNP

High: 60 m

Low: 0 m

CHM—RRNP
High: 45 m

Low: 0 m
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ranges from 150 to 750 m above mean sea level 
with an average slope of 27°. Annual rainfall 
is approximately 1200 mm and the average 
temperature ranges in winter and summer are 
12–21 and 25–31 °C respectively (Anonymous 
2010). The RRNP is an open canopy eucalypt-
dominated forest with 30–70% foliage projective 
cover (vertically projected percentage cover of 
photosynthetic foliage of all strata) (Specht & 
Specht 1999). The most common species based on 
basal area dominance are found in the overstorey 
of the RRNP and include Corymbia maculata, 
Eucalyptus propinqua, Eucalyptus siderophloia and 
Lophostemon confertus. The understorey is mainly 
covered by native grass and shrub species. 
 The elevation of the BRNP study area ranges 
from 600 to 1200 m above mean sea level 
with an average slope of 36°. Annual rainfall 
is approximately 3000 mm and the average 
temperature ranges are 3–19 °C in winter 
and 15–31°C in summer (Anonymous 2010). 
The BRNP is a tall, closed canopy subtropical 
rainforest with 70–100% foliage projective cover 
(Specht & Specht 1999). The most common 
species based on proportional basal area are 
Planchonella australis, Heritiera actinophylla, 
Sloanea woollsii, Geissois benthamiana and Syzygium 
crebrinerve (Smith et al. 2005). Both study areas 
are managed by the NSW Office of Environment 
and Heritage.

Field data collection and processing

Field data collection was conducted between 
July and December 2010. A total of 50 sampling 
plots representing 25 plots of 50 m × 50 m  
(0.25 ha) for each study site were used to measure 
and estimate structural parameters. A random 
sampling method was adopted to assure that 
sampling measurements acquired all possible 
variability of forests conditions. The central 
location of each plot was determined using 
a global positioning system (GPS) handheld 
navigator. Five coordinates were recorded for 
each plot over 20 min and averaged (standard 
deviations (SD) for BRNP = 5–8 m and RRNP 
= 3–6 m). Foliage projective cover, mean tree 
height, dominant tree height, dbh, dominant 
dbh, mean basal area and stem density at plot 
scale in both study areas were recorded. 
 In each sampling plot, tree heights of all 
trees with 10-cm dbh were measured using a 
forestry 550 laser rangefinder/height meter and 

averaged. Height of dominant trees in each plot 
were separately recorded and then averaged. All 
trees with dbh greater than 10 cm were measured 
using diameter tape. Diameters for buttressed 
trees were measured immediately above the 
buttresses. Dbh of all dominant trees in each plot 
were also separately measured, then averaged. 
The sum of the basal area of all living trees in a 
stand (m2 ha-1) was calculated from diameters of 
all trees in a sampling plot.
 Field foliage projective cover measurements 
were recorded us ing the methodology 
developed by the Queensland Remote Sensing 
Centre (Armston et al. 2009). Three 50-m 
transects were laid in each plot radiating in 
N–S, NE–SW and SE–NW directions using a 
compass (Figure 2). At 1-m intervals along 
each transect, overstorey (woody plants ≥ 
2 m height) and understorey (woody or 
herbaceous plants ≤ 2 m height) covers were 
recorded. Overstorey plant intercepts were 
recorded using a densitometer with intercepts 
classified as green leaf, dead leaf, branch or 
sky (Johansson 1985). Understorey herbaceous 
measurements were made with a laser pointer 
at zenith of zero with intercepts classified as 
green leaf, dead leaf, rock, etc. Table 1 provides 
a statistical summary of structural parameters 
of vegetation of the sampling plots.

Figure 2 Orientation of transects used for foliage 
projective cover collection in the field 
(Armston et al. 2009)
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LiDAR data

LiDAR data were collected in July and August 
2010 using a Leica ALS50-II LiDAR system 
at a flying height of 2000 m. The laser pulse 
repetition frequency was 109 kHz. The laser 
scanner was configured to record up to four 
returns per laser pulse. The average point 
spacing and point density were 1 m and 1.3 
points per square meter respectively and the 
footprint diameter was 0.5 m. Average range 
varied between 524 m and 1018 m (mean  
800 m) for the BRNP, and 157 m and 460 m 
(mean 256 m) for the RRNP. Mean rates of 
penetration through the vegetation varied 
from 4.3% in the closed canopy of BRNP to 
19% in the open canopy of RRNP. The LiDAR 
data were documented as 0.07 m for vertical 
accuracy and 0.17 m for horizontal accuracy 
by the data provider. The LiDAR data were 
classified into ground and non-ground points 
using proprietary software by the NSW Land and 
Property Information and were delivered in LAS 
1.2 file format. 

Data processing

Figure 3 shows a flowchart of the processing 
steps carried out in this study. All returns were 
considered for subsequent analysis for both study 
areas. Ground and non-ground returns were 
separated and a 1-m digital terrain model (DTM) 
was produced using ground returns via Kriging 
interpolation to the nearest 6 data points. The 
accuracy of LiDAR-derived digital terrain model 
was evaluated using 70 and 55 post-processed 

differential GPS points for the BRNP and RRNP 
respectively. The GPS points were collected using 
a MobileMapper and included 4 transects for 
the BRNP and 3 for the RRNP. Collected GPS 
points were distributed over flat to slope terrain 
in open ground (park roads) and under forest 
canopies in different densities. The calculated 
root mean square errors (RMSE) were 5.7 and 
1.9 m for closed canopy BRNP and open canopy 
RRNP respectively. 

Computation of LiDAR metrics

LiDAR metrics were calculated from separated 
non-ground laser returns. Observations with 
height values < 2 m for the RRNP and < 0.5 m  
for the BRNP were discarded from existing non-
ground data in order to remove undulation of 
the terrain and other objects (herbaceous 
vegetation, fallen logs). Thus, most reflectance 
would correspond to understorey and overstorey 
vegetation. The non-ground returns used to 
extract co-located 50 m × 50 m field sample plots 
of each study area and subsequently a series of 
LiDAR metrics were computed. The computed 
variables comprised height, rate of laser point 
penetration and proportion of laser points 
within different height bins related variables 
corresponding to sample plots of each study 
site. The computed 31 LiDAR metrics used 
in this study were based on previous studies 
(Magnussen & Boudewyn 1998, Næsset 2002, 
2004, Heurich & Thoma 2008, Nord-Larsen 
& Riis-Nielsen 2010). LiDAR fractional cover 
metric (Lovell et al. 2003) were employed in 
this study (Table 2). 

Table 1 Statistical summary of structural parameters of vegetation of the sampling plots

Target parameter Mean Minimum Maximum Standard deviation

BRNP RRNP BRNP RRNP BRNP RRNP BRNP RRNP

Mean tree height (m) 32 27 17.5 12.5 36 31.5 9.1 13.5

Dominant tree height (m) 40.6 34.3 28.4 25.2 48 38.6 6.5 9.3

Mean dbh (cm) 31 20.1 10 10 49.5 39 10.8 10.6

Dominant dbh (cm) 64.8 49.2 41 34 140 123 14.7 12.7

Mean basal area (m2 ha-1) 32.3 16.8 24.3 11.3 48.1 31.6 5.7 4.7

Stem density (ha-1) 388 264 272 148 564 440 72 92

Foliage projective cover (%) 87 70.6 69.7 57.3 96.6 87.1 6.8 7.4

BRNP = Border Range National Park, RRNP = Richmond Range National Park



Journal of Tropical Forest Science 26(3): 397–408 (2014) Ediriweera S et al.

401© Forest Research Institute Malaysia

Figure 3     Flowchart of the model building method; DTM = digital terrain model

Structural data of vegetation LiDAR data

Data processing DTM extraction

Regression analysis Variable selection

LiDAR model

Model validation

Table 2 Summary of LiDAR metrics

Variable Description

(Z_max) Maximum laser height

(Z_m) Mean laser height

(Z_med) Median laser height

(Z_rmed)  Relative median laser height [Z_rmed= Z_med/ Z_max  ×100]

(p_10th …..,  p_90th ) Laser height percentile from 10th, 20th to  90th percentiles

(Z_sd) Standard deviation of height dispersion

(Z_k) Kurtosis = distribution form parameter  

(Z_cv)  Coefficient of variation =  distribution form parameter

 (PRgl) Proportion of LiDAR points at ground layer 
PRgl = sum of penetrated all laser pulses (pr) < ma/total number of all pulses measured 
(TP); ma for BRNP = 1.5 m, RRNP = 1 m 

 (PRol) Proportion of LiDAR points at overstorey 
PRol = pr < 0.75 * Z_max/ TP 

 (PRml) Proportion of LiDAR points at middlestorey 
PRml = pr < 0. 5* Z_max/ TP 

 (PRul) Proportion of LiDAR points at understorey
PRop = pr < ha × Z_max/ TP; ha for BRNP = 8 m and RRNP = 3 m

(P1,  P2,  P3 ……… P9) Proportion of LiDAR point within different height bins:  Z_max divided into 10 
equally sized bins the proportion of LiDAR points  were calculated within  different 
bins of vertical forest profile

Fracov LiDAR fractional cover:  

Cv(z) = number of first returns higher than Z, CG = number of first return points from 
ground level; Z for BRNP =1.5 m,  RRNP = 1 m

1 – Pgap = 
Cv (z)

Cv (0) + CG



Journal of Tropical Forest Science 26(3): 397–408 (2014) Ediriweera S et al.

402© Forest Research Institute Malaysia

Model fitting and validation

For model fitting, each vegetation type 
representing the study areas was considered 
separately. Multiple linear regression analysis 
was selected to develop estimation models for 
prediction of structural parameters of vegetation. 
Multiple linear regression analysis had ground- 
measured structural parameters of vegetation 
as dependent variables and the LiDAR-derived 
metrics as independent variables. Estimation 
models were constructed as follows:

X = β°+ β1Z_max + β2Z_m + β3Z_med +  
β4Z_rmed + β5 p_10th + β6 p_20th + β7 p_30th 

+ β8 p_40th + β9 p_50th + β10 p_60th + β11 p_70th 

+ β12 p_80th + β13 p_90th + β14Z_sd + β15Z_k + 
β16Z_cv + β17PRgl + β18PRol + β19PRml + β20PRul 
+ β21Fraccov + β22P1 + β23P2 + β24P3 + β25P4 + β26P5 
+ β27P6 + β28P7 + β29P8 + β30P9  
 (1)

where X = ground-measured structural parameters 
of vegetation (mean overstorey height, dominant 
overstorey height, mean dbh, dominant dbh, 
mean basal area, foliage projective cover and 
stem density); Z_max = maximum laser height 
(m); Z_m = mean laser height (m); Z_med = 
median laser height (m); Z_rmed = relative 
median laser height; p_10th, p_20th, p_30th, 
p_40th, p_50th, p_60th, p_70th, p_80th, p_90th = 
laser height percentiles from the 10, 20, 30, 40, 
50, 60, 70, 80, and 90 percentiles of the all pulse 
laser canopy heights (m) respectively; Z_sd = 
standard deviation of height dispersion (m); 
Z_k = Kurtosis of height; Z_cv = coefficient of 
variation; PRgl = proportion of LiDAR points at 
ground layer; PRml= proportion of LiDAR points 
at middlestorey layer; PRul= proportion of LiDAR 
points at understorey layer; PRol = proportion 
of LiDAR points at overstorey; Fraccov= LiDAR 
fractional cover; P1, P2, P3, P4, P5,P6,P7,P8, P9 
= proportion of LiDAR point within different 
height bin and βo – β30 = constants that must be 
estimated. 
 Stepwise selection was performed to select 
independent variables to be included in final 
models. No independent variables were left in 
the models with a partial F statistic with level of 
significance > 0.1. The variance inflation factors 
> 10 was considered to detect multicollinearity 
of independent variables. Regression diagnostics 
including adjusted r2, coefficient of variance 

of the root mean square error (CVRMSE) and 
residual plots were used to select optimal models. 
RMSE was directly interpretable in terms of 
measurement units. RMSE of two models both 
measured the magnitude of residuals. However, 
they cannot be compared in order to determine 
which model provided better performance. 
The RMSE of model and mean of the predicted 
variables were expressed in the same units, so 
taking the ratio of these two allowed the units 
to cancel. This ratio can then be compared 
with other such ratios in a meaningful way. 
Between two models, the model with the 
smaller coefficient of variance, i.e. CVRMSE had 
predicted values that were closer to the actual 
values. Thus, CVRMSE was used in this study for 
model selection.  
 Since ground-measured data of all sampling 
plots were used for model development, cross-
validation was performed for validation process. 
One observation (sample plot) was removed 
from the dataset at a time and the selected model 
was fitted to the dataset from the sample plots. 
Bias and coefficient of variation were used to 
assess prediction error of candidate models. 

RESULTS

Dominant overstorey height and mean overstorey 
height in the BRNP were relatively less accurate 
compared with results obtained for the same 
parameters in the RRNP (Table 3). Overall 
adjusted r2 was 0.40–0.61 for BRNP closed canopy 
and 0.81–0.90 for RRNP open vegetation. Figures 
4 and 5 show the observed versus the predicted 
structural parameters of vegetation with the 
respective CVRMSE per cent values in the BRNP 
and RRNP respectively. Figure 5a indicated that 
the CVRMSE was greatest (18.4%) for mean 
height for closed canopy data. For mean (Figure 
4a) and dominant tree height in RRNP (Figure 
4b), the CVRMSE was below 5%. The best subset 
of the model for tree height with least error was 
obtained for open canopy RRNP sites. 
 The adjusted r2 for LiDAR metrics and 
field-measured mean and dominant dbh 
were between 0.35 and 0.70 for both sites.  
The highest adjusted r2 value (0.66) was 
obtained for mean dbh for closed canopy 
site and the respective CVRMSE was 11.3% 
(Figure 4c). Figure 5c showed that estimation 
of mean dbh for the open canopy RRNP site 
was particularly poor in terms of the higher 
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Table 3 Summary of best subset regression models obtained from ground-measured structural parameters 
of vegetation and different LiDAR metrics for subtropical rainforest at Border Range National Park 
(BRNP) and open canopy eucalypt forest at Richmond Range National Park (RRNP)

Structural 
parameter of 
vegetation

Subtropical rainforest 
BRNP (n = 25)

A
dj

. r
2

C
V

R
M

SE
(%

)

Open canopy forest 
RRNP(n = 25)

A
dj

. r
2

C
V

R
M

SE
(%

)

Mean tree 
height (m)

= 24.7 – 0.72 × P_70th 0.40 18.4 = 37.96 + 0.512 × P_70th 
– 27.31 × P9

0.90 2.9

Dominant tree 
height (m)

= 20.33 + 2.17 × P_80th
 – 1.82 

× P_70th
0. 61 10.5 = 20.5 + 2.3 × P6 – 0.486 × 

Z_sd+1.0 x Z_med +0.371 × 
P_80th

0.81 1.1

Mean dbh 
(cm)

= 48.376 + 1.383 × ht_m 
– 16.035 × PRul

0.66 11.3 = 12.70 + 0.610 × P_10th + 
0.60 × Z_sd

0.35 14.5

Dominant dbh 
(cm)

= 42.46 – 6.40 × P_ 60th + 8.02 
× Z_m

0.47 10.2 = 31.99 + 4.336 × Z_m  
–0.837 × Z_rmed

0.70 9.6

Mean basal 
area (m2 ha-1)

= 33.88 + 1.442 × P_10th

 – 1.507 × P_90th + 4.393 × 
Z_sd –1.595 × P_70th

0.62 10.8 = 45.14 + 0.035 × Fracov 
–0.436 × P_50th – 50.05 × P2

0.65 9.4

Stem density 
(ha-1)

= 1255.7 – 1182 × PRgl 0.21 29.1 = 877.77 – 11.82 × Z_max 0.2 24.5

Foliage 
projective 
cover (%)

= 51.4 – 1.20x P_90th – 66.4 
PRul – 31.1 × P6 + 80.4 Fraccov 
+ 3.49 × Z_sd

0.60 14.2 = 75.74 – 100.46 ×P4 + 75.85 
× PRml – 0.774 × P_40th

0.72 4.6

Adj. = adjusted, CV = coefficient of variance, Fracov = LiDAR fractional cover (see Table 2 for details)

Figure 4  Ground-measured (x-axis) versus predicted (y-axis) structural parameters of vegetation: (a) mean 
height (m), (b) dominant height (m), (c) mean dbh (cm), (d) dominant dbh (cm), (e) basal area 
(m2 ha-1), (f) stem density (ha-1) and (g) foliage projective cover (%) for models for at Border 
Range National Park; solid lines show 1:1 relationship; CVRMSE = coefficient of variance of the 
root mean square error

(a) (c) (e)

(b) (d) (f)

(g)
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CVRMSE observed (14.5%). The least accurate 
result for dominant dbh estimation (adjusted  
r2 0.47) was obtained for the BRNP site with 
10.2% of CVRMSE. The best result for dominant 
dbh estimation was obtained for the RRNP site 
with least error 9.6% CVRMSE (Figure 5d).
 The adjusted r2 produced by the equation for 
basal area was between 0.62 and 0.65. Table 3 
and Figure 5e showed that the best results were 
obtained for the RRNP site data and adjusted r2 
and CVRMSE were 0.65 and 9.4% respectively. In 
comparison, least accurate result were obtained 
for estimation of basal area with CVRMSE at 
10.8% (see Figure 4e) for the BRNP. Results 
for estimation of stem density for both BRNP 
and RRNP site data were not as accurate as 
other investigated structural parameters, as the 
adjusted r2 were only 21 and 20 respectively. The 
CVRMSE for the BRNP and RRNP which were 
shown in Figures 4 and 5f were 29.1 and 24.5% 
respectively.
 The percentage of foliage projective cover 
was also relatively accurate for the closed canopy 
BRNP showing the adjusted r2 value of 0.60. A 
comparison between study site vegetation showed 
that the best results were obtained for the open 

canopy RRNP site (adjusted r2 = 0.72), while 
the least accurate results were produced for the 
closed canopy BRNP data. The CVRMSE values 
were between 14.2 (BRNP) and 4.6% (RRNP) 
(Figures 4g and 5g respectively). In the current 
study, all developed equations were parsimonious 
models with four or less independent variables. 
Results for most structural attributes in the 
subtropical rainforest of the BRNP were less 
accurate compared with the RRNP site.

Validation of the regression models prediction
 
Table 4 summarises results of cross-validation 
of all candidate models. Mean difference 
between predicted and ground-measured (bias) 
was relatively accurate for most of the models 
developed indicating the least bias error of both 
sites. However, for the closed canopy subtropical 
rainforest site at the BRNP, the calculated bias 
values were relatively high. The greater CV 
showed that estimation of stem density of the 
BRNP was almost 58%.  Some of the CV in this site 
was even smaller than the values for open canopy 
site at RRNP. For instance, CV for estimation of 
mean dbh for BRNP and RRNP were 14.8 and 

Figure 5 Ground-measured (x-axis) versus predicted (y-axis) structural parameters of vegetation: (a) mean 
height (m), (b) dominant height (m), (c)  mean dbh (cm), (d) dominant dbh (cm), (e) basal 
area (m2 ha-1), (f) stem density (ha-1) and (g) foliage projective cover (%) for models at Richmond 
Range National Park; solid lines show 1:1 relationship; CVRMSE = coefficient of variance of the 
root mean square error

(a)

(b)

(c)

(d)

(e)

(f)

(g)
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22.5% respectively. Results showed that least bias 
values were obtained for dominant tree height 
(-2.0) and mean tree height (-4.2) at BRNP site. 
However, the lowest CV (9%) was obtained for 
estimation of dominant height at BRNP.
 Most of the developed candidate models for 
RRNP had relatively least bias (bias for foliage 
projective cover was almost zero) and the CV 
values were relatively low. The lowest CV (2%) 
was obtained for estimation of dominant tree 
height at RRNP. Furthermore, the CV for 
estimation of mean height, foliage projective 
cover and dominant dbh were 5.6, 6.5 and 9.2% 
respectively. The CV for mean basal area was 15% 
and the greatest CV was obtained for stems per 
hectare (60%). 

DISCUSSION

Metric measures from the distribution of LiDAR 
data points utilised in this study demonstrated 
the potential of biophysical parameter estimation 
of vegetation structure, even in the closed 
canopy with complex vegetation structure and 
topography.  However, the accuracy of dominant 
tree height and mean tree height of the closed 
canopy BRNP was relatively low compared with 
that of the open canopy RRNP. Incorporated 
LiDAR metrics did not account for large amount 
of variations in mean and dominant tree heights 
(see Table 3), indicating that magnitude of error 
for these predictions was considerably high 
in closed canopy subtropical rainforest. The 

accuracy of height models derived using the 
present method for closed canopy BRNP was 
similar to those found by Gatziolis et al. (2010) 
in temperate rainforest. This was probably due 
to the fact that as complexity of canopy structure 
increased, the probability that LiDAR pulses 
penetrated below the canopy decreased by 
interference of middle and understorey strata. 
This caused considerable impact on density of 
LiDAR points below the canopy which could affect 
the accuracy of laser metrics. In contrast, the 
estimation of dominant and mean canopy heights 
from LiDAR data achieved high level of accuracy 
(error < 3%) and explained over 80% of total 
variation in dominant height for open canopy 
eucalypt forest of the RRNP. Overall accuracy for 
estimation of dominant canopy height in open 
canopy conditions was comparable with other 
studies of Australian eucalypt forests (Tickle et 
al. 2006, Haywood & Stone 2011) and globally 
with structurally similar sparse canopy coniferous 
forests (Roberts et al. 2005, Heurich & Thoma 
2008). Most studies assumed that the proportion 
of laser pulse returned from, or above a given 
reference height is proportional to the fraction of 
leaf area above it (Magnussen & Boudewyn 1998, 
Roberts et al. 2005, Haywood & Stone 2011).  
The findings of this study are consistent with 
this assumption as greater relationships between 
ground-measured tree heights (both mean and 
dominant tree heights) and LiDAR-derived 
heights were observed above the 70th percentile 
with other LiDAR-derived statistical parameters 
for the RRNP and the BRNP sites. 

Table 4  Summary of cross-validation results for Border Range National Park 
(BRNP) and Richmond Range National Park (RRNP) 

Dependent variable BRNP
(n = 25)

RRNP
(n = 25)

Bias %  CV Bias % CV 

Mean tree height (m) -4.2 11.7 -0.03 5.6

Dominant tree height (m) -2.0 9.0 -0.04 2

Mean dbh (cm) 1.5 14.8 4 22.5

Dominant dbh (cm) 0.9 17.1 0.12 9.2

Mean basal area (m2 ha-1) -0.8 17.6 0.03 15

Stem density (ha-1) 15.6 57.9 7.8 60

Foliage projective cover (%) 1.3 9.3 0.0 6.5

CV = coefficient of variation 
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 Dbh estimates for RRNP and BRNP tree 
species based on LiDAR metrics were less 
accurate than tree height estimation models. The 
least accurate model was mean dbh estimation at 
RRNP and the best model found for estimation 
of dominant dbh was at BRNP. Dbh estimations 
in this study were similar to Jensen et al. (2006) 
who investigated diverse vegetation structure 
and composition of the topographically complex 
terrain in North America. Our results were also 
similar to findings by Heurich and Thoma (2008) 
who studied structurally rich natural European 
beech and spruce forests in Germany. Mean 
basal area estimates using LiDAR metrics gave 
satisfactory results for both RRNP and BRNP; 
however, the best model for basal area estimates 
was for RRNP. When ground-measured basal area 
was regressed against LiDAR derived variables 
of vegetation on data from natural regrowth 
eucalypt forest in Australia, similar r2 values 
of 0.56 with an RMSE of 14 m2 was observed 
(Haywood & Stone 2011). 
 In this study, results for estimation of stem 
density were low in accuracy for both subtropical 
and open canopy forests. Conversely, r2 value 
of 0.58 was obtained when stem density was 
regressed against mean height of LiDAR metric 
derived from all laser-scanning returns based on 
data from mixed-species forest in Canada (Lim 
& Treitz 2004). Haywood and Stone (2011) 
found r2 = 0.41 for regression against two height 
percentiles and measure of intensity from young 
Australian eucalypt forest while Heurich and 
Thoma (2008) reported r2 = 0.90, 0.71 and 
0.69 for deciduous forest, coniferous forest 
and combined all deciduous and coniferous 
forests plots respectively. Incorporated LiDAR 
metrics of this study explained 18–21% of the 
variation in the stem density for both vegetation 
conditions. In this study, the estimation of stem 
density from the fitted variables is related to the 
penetration of laser points into ground layer and 
maximum tree height. Together, the variation 
of laser pulse penetration rate may determine 
stem density of the stand. The method tested in 
our study revealed that estimating stem density 
of subtropical plant communities from LiDAR 
data was rather difficult. An alternative method 
described by Turner (2006) estimate stem density 
by an automated tree detection approach over 
the LiDAR data. However, the author described 
that crown segmentation was challenging for 
structurally complex closed canopy environment. 

 Foliage projective cover estimates in the open 
canopy RRNP site based on LiDAR scanning 
measurements showed strong relationship 
with ground-measured foliage projective cover. 
A study done in an Australian eucalypt forest 
has reported strong linear relationship (r2 = 
0.90–0.95) with just LiDAR fractional cover and 
ground-measured foliage projective cover (Weller 
et al. 2003). This finding is similar to the finding 
of our study. However, the foliage projective cover 
estimate model for BRNP was found to be less 
accurate compared with RRNP where eucalypt 
forest was dominant. This was probably due to 
the presence of large crowns with planar outer 
surface being distinguishable in the BRNP, thus 
decreasing return energy due to occlusion in 
a horizontally uniform way. This situation may 
prohibit exploiting necessary LiDAR derived 
information of other lower strata at high level of 
accuracy.

Limitations 

Overall this study raised three issues: (1) 
limitations encountered when relating LiDAR 
metrics, (2) field measurements in particular 
to closed canopy subtropical rainforest and (3) 
technical specification in LiDAR data acquisition. 
A major limitation was the effect of structural 
complexity of vegetation on the reflection of 
laser pulses. Due to the large tree crowns in 
overstorey layers in the BRNP site, there was a 
tendency for more first returns from the upper 
level of canopy recorded by the LiDAR system. 
As such, important information from the lower 
strata may be overlooked. Due to variations in 
sunlight penetration to the forest floor, leaf 
inclination and orientation of the middle and 
understorey layers of rainforest species may vary. 
Thus, modifications of leaf morphology may also 
affect the reflectance of laser energy throughout 
the forest profile. Considering the physiognomy 
of the eucalypt-dominated RRNP, the loosely 
aggregated leaves in tree crowns and 30–70% 
foliage projective cover (Specht & Specht 1999) 
affect maximum laser pulse penetration to the 
forest floor. 
 The limitations of gaining accurate field 
data measurements are likely to affect the 
accuracy of predicted models. In the sampling 
plots of closed canopy BRNP with tall trees, 
accurate measurement of tree heights was 
difficult due to hindrance from lower strata. 
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Furthermore, the 10-cm threshold for dbh was 
critical at the RRNP site as most of the stems 
were small and medium sized representing 
young regrowth (approximately 20 years). LiDAR 
sensor configuration and specification of LiDAR 
data acquisition have strong influence on the 
accuracy of data (Goodwin et al. 2006) due to 
high flying altitude (2 km for the present study), 
high point spacing (1 m) and low point density 
(1.3 point per m2) which may also have affected 
the quantification of structural attributes of 
vegetation in this study. 
 In conclusion, this study demonstrated the 
application of LiDAR metrics for obtaining 
important structural parameters of vegetation 
of closed canopy subtropical rainforest and 
open canopy eucalypt-dominated forest in 
topographically complex terrain using LiDAR 
data. Accuracies of most of the estimates in open 
canopy eucalypt-dominated forest were of high 
levels and comparable with findings from related 
studies despite the complexity of topography, 
species composition and density of vegetation. 
The current study provided evidence that this 
could be achieved even in a subtropical rainforest 
with rugged terrain. Our findings revealed that 
predicting accuracies of structural attributes 
by LiDAR metrics in closed canopy subtropical 
rainforest with high species diversity was inferior 
to predicting the accuracies in sparse canopy with 
low species diversity. Nevertheless, it was notable 
that, despite structurally complex subtropical 
rainforest with rugged terrain, it was possible 
to obtain estimation of structural parameters 
with satisfactory level of accuracy. Our findings 
reinforced that obtaining accurate LiDAR 
estimates of vegetation structure was a function 
of complexity of horizontal and vertical structural 
diversity of vegetation.
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