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Sustaining forest carbon sinks is a priority in climate change mitigation and forest management strategies. 

However, several issues confront the role of Philippine forests in climate change mitigation. These include 

the loss of old-growth cover, unsustainable forest landuse practices, and lack of site-specific modelling. These 

are the realities in the Quirino Forest Landscape Project (QFLP), a semi-contiguous collection of secondary 

forests in four municipalities of Quirino Province. This study was undertaken to develop a forecast model 

for carbon in aboveground of underutilised trees in QFLP. Data were collected through field inventory, the 

National Mapping and Resource Information Authority Land Cover Databases, and secondary sources. 

Multiple linear regression, principal components analysis, and biodiversity indices were used to analyse the 

data collected from different sampling areas to develop a forecast model. Findings suggest that the QFLP 

forest was secondary, as evidenced by the fact that > 60% of the trees were underutilised. With the ongoing 

decline in forest cover due to resource use and lack of forestry policy enforcement, it is worth noting that 

the carbon sequestration potential of underutilised species is not dependent on ecological dominance; that 

is, species that are more vulnerable to local extinction have higher potential to gain carbon. Given all the 

variables and their high forecasting power, the study demonstrated that the developed model was precise 

enough to provide future carbon capture values for QFLP.
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Predicting the impacts of climate change on 

the environment and biodiversity has drawn 

a great deal of scientific attention. One of the 

most important anthropogenic contributors to 

climate change is the emission of greenhouse 

gases, especially carbon dioxide. Carbon storage 

is regarded as one of the most important forest 

ecosystem services (Bello et al. 2015), and the 

role of trees and forests in carbon sequestration 

has also earned immense research recognition. 

Forests can help reduce carbon in the air, not 

only when people increase it, but also when 

people prevent losing it. Most of the studies, 

however, concentrated only on a particular 

group of tree species and specific landscapes. 

Often, researchers only focus on the carbon 

sequestration ability of very large or high-

priority species and pay little attention to the 

lesser-known groups or species of forest trees. 

In a real-world forest, functional and species 

diversity are not only the qualities of dominant 

trees, but also of the obscure ones. According to 

Yeom (1984), 93% of the tropical forest volume 

consists of species that are lesser known and/

or lesser used. These species that make up 

the majority of forest diversity end up being 

destroyed or wasted. Given that diversity of 

these underutilised species is a substantial part 

of a forest, removal of lesser-known and/or 

lesser-used species also removes from the forests 

their capacity to store carbon. Worse, wasting 

(e.g. burning) these trees will revert carbon 

dioxide to the atmosphere. As Lasco et al. 

(2006) found, after logging operations, about 

40% of the woody aboveground biomass carbon 

is converted to lumber and veneer/plywood 

or sold as logs. The remaining 60% of carbon 

is emitted to the atmosphere as carbon dioxide 
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through burning as fuel and decay. This 60% 

of woody aboveground biomass carbon, which 

comprises mostly of underutilised tree species, 

is not used and is left in the forest. 

The province of Quirino in Northeastern 

Philippines has diverse forest resources. Situated 

in the Sierra Madre Mountains, 77% (235,460 ha) 

of its total land area (305,718 ha) are categorised 

as forestlands (http://www.rdc2.gov.ph/invest/

quirino/index.php). The Philippine Forestry 

Statistics 2010–2017 (https://forestry.denr.gov.

ph/index.php/statistics/philippines-forestry-

statistics) published by the Forest Management 

Bureau, Department of Environment and 

Natural Resources (DENR) showed that the 

Province of Quirino has a natural broadleaf 

forest cover of approximately 126,515 ha, and 

73% are listed as closed forest. It is also generally 

known that the forests of Quirino are some of 

most anthropogenically impacted forests and 

continually face undocumented logging, land 

conversion, burning, squatting and many other 

poor and unsustainable uses.

Several conservation projects have been led 

by various organisations to help protect the 

natural resources of the province, one of which 

is the Quirino Forest Landscape Project (QFLP). 

The QFLP covers the semi-contiguous open 

(secondary) and closed (old growth) forests 

that run along four out of six Quirino towns: 

Aglipay, Cabarroguis, Diffun and Maddela. 

QFLP was intended to resolve the underlying 

problems that cause the decline in forest cover 

(SERD 2018). 

SERD (2018) estimated that around 40% of 

the forest cover is made up of underutilised 

species. Following the insights from the Yeom 

(1984) paper, if the utilisation and ecological 

values of underutilised species are not defined, 

it is likely that the ecosystem services that these 

resources provide will be wasted. In the context 

of carbon sequestration and climate change 

mitigation, it is important to assess the capacity 

of these underutilised community of species to 

store carbon in their biomass. Thus, the main 

objective of this study was to develop a carbon in 

aboveground biomass (C-AGB) forecast model 

for underutilised trees in QFLP, hereinafter 

referred to as QFLUS
Carbon

. To accomplish 

this, we (1) described the tree diversity and 

importance values (IVs) of underutilised tree 

species sampled in QFLP, (2) calculated C-AGB 

of all inventoried underutilised species in QFLP, 

(3) determined the rate of forest cover change 

in QFLP, (4) determined the interrelationships 

of the carbon sequestration variables, (5) 

developed a regression model that could 

forecast C-AGB accumulation of underutilised 

tree species in QFLP, and (6) forecasted a 30-

year C-AGB value.

MATERIALS AND METHODS

Area selection and sampling design

The study was performed in 12 barangays 

(communities) across the four municipalities 

of Quirino Province under the QFLP, namely, 

Aglipay, Cabarroguis, Diffun and Maddela. 

Sampling was done using transects and paired 

quadrats, following the method by Manuel et 

al. (2019). Given the time constraints and safety 

precautions, the inventory team used pacing 

(undulating distance) and established a transect 

of 150 m. At each end of the transect, one pair of 

20 m × 20 m quadrats was established; quadrats 

were perpendicular and adjacent to the transect. 

Total sampling area was 1.92 ha.

The inventory team identified, measured, 

and counted all canopy trees (diameter at breast 

height (DBH) ≥ 10 cm) within each quadrat. 

Tree identification was facilitated by resident 

dendrologist and local guides. For dubious 

species, minimal leaf samples were gathered and 

dry-pressed for verification in the laboratory. For 

species known to locals only by vernacular names, 

identities were checked using literatures and 

resources including Revised Lexicon of Philippine 

Trees by Rojo and Salvosa (2011), and PhytoImages 

(http://www.phytoimages.siu.edu). DBH was 

measured for each tree using diameter tape. 

Individual counts were made in the field then 

sorted by species and plots.

C-AGB of underutilised species in QFLP 

Estimating C-AGB was a two-stage process. Since 

destructive sampling of large trees was not 

feasible, the AGB was approximated using the 

allometric equation for tropical trees developed 

by Brown (1997). This allometric equation was 

based on the premise that DBH was positively 

correlated with biomass. Rasmussen et al. 

(2012) established that moist zone equations 
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developed by Brown (1997) provide the same 

biomass estimates as polynomial and quadratic 

equations. Brown’s (1997) equation applies to 

trees having DBH of 5–148 cm, which was about 

the same range of DBH of trees measured in the 

QFLP. 

The second stage was the derivation of C-AGB 

using known proportions of carbon in wood. 

While there are many conservative estimates for 

C-AGB, we used the C-AGB multiplier of 0.50 as 

carbon content of each living tree is estimated to 

be 50% of the AGB (Barrett & Christensen 2011, 

Barrett 2014, Tashi et al. 2016, Vijayakumar et 

al. 2016). AGB to carbon content conversion 

was based on the guidelines established in the 

IPCC Good Practice Guidance for Land Use, Land‐
Use Change and Forestry (Aalde et al. 2006). 

Forest cover change

The forecast model would require 

spatiotemporal information on forest cover 

increase or decrease. For this, we obtained the 

Philippine Land Cover Database for years 2000, 

2005, 2010, 2015 and 2018 from the National 

Mapping and Resource Information Authority 

(NAMRIA) to evaluate the forest cover (open 

and closed types) in the QFLP. The vector data 

for each period were classified separately, and 

from these, a change matrix was developed. The 

rate of annual forest cover change was computed 

using the formula by Puyravaud (2003). The 

formula was derived from the Compound 

Interest Law, making it more intuitive than any 

other formula.

Estimation of C-AGB of underutilised 

tree species in QFLP using regression 

model

 

Multiple linear regression was used to model 

C-AGB of underutilised tree species in QFLP. 

Variables such as DBH, abundance, density and 

rate of annual AGB accumulation of species 

were used as the final set of variables, on the 

premise that these were not interinfluenced 

by each other (multicollinear). The annual 

accumulation rate of AGB (3.40 t ha
-1
 year

-1
) was 

taken from the IPCC data on aboveground net 

biomass growth in tropical rainforests in Asia 

(Aalde et al. 2006). This multiplier is essential 

to capturing the landscape-level capacity of  

underutilised trees to fix carbon dioxide. This 

value was factored to obtain an estimated yearly 

aboveground biomass accumulation of each 

species. Forecasting power of the resulting 

model was based on the r
2
 value.

To avoid multicollinearity, a diagnostic test 

(Pivac 2010, Shrestha 2020) was performed among 

forecast variables. Modern statistical software has 

built-in decision protocol whether variables with 

multicollinearity or multicollinearity tendencies 

should be excluded from the final form of the 

model (i.e. coefficients). Using IBM-SPSS v.23, 

multicollinearity diagnostics were used to avoid 

problems with fitting and interpreting the 

regression model.

Using forest cover change in the model to 

forecast carbon

At this stage, the developed regression still 

lacked key spatiotemporal variables for full use 

of the forecast model. The main conundrum 

for the use of the forecast is that forest cover 

and year progression data have to be projected, 

then incorporated. We were not able to find 

any literature or studies where change in forest 

cover was incorporated without data on plant 

growth curves. Using the plant growth curve 

and other related variables as forecast variables 

was one of the limitations of this study, as data 

vary in species level. 

In order to integrate the change in forest 

cover and the yearly progression to the 

developed model, assuming that all forecast 

variables were equal, the annual rate of change 

in forest cover was factored into the minimum 

and maximum values of the regression model to 

determine the possible decrease or increase in 

forest area for a given year. Using forest cover 

data for 2020, and with the corresponding rate 

of forest cover change, we forecasted C-AGB of 

underutilised tree species in QFLP for 2020 to 

2050. 

RESULTS AND DISCUSSION

Tree diversity 

Quadrat sampling in QFLP yielded 125 

species in 491 individuals. Overall community 

diversity was very high (H’ = 3.90) and highly 

heterogeneous (Shannon evenness (E) = 0.81). 
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Dominance was found to be shared by about 20 

species (Simpson’s diversity reciprocal index = 

1/D = 20.11). Highest possible diversity, H’
max

 

was computed using the natural logarithm (ln) 

of total observed species (S), i.e. ln/S = 4.83 

(Table 1).

Forest formation in the QFLP is akin to 

tropical lowland evergreen rainforest (Manuel 

et al. 2019). The most prominent climax 

species and species associations conform to the 

descriptions by Fernando (2008). Specifically, 

the QFLP forest is a mix of the lowland “Lauan-

oak type” and lower montane “Tanguile-oak type” 

of dipterocarp forest. These Shorea–Lithocarpus 

associations are the most prominent climax 

species in the area. The Philippines DENR still 

classifies this forest formation as “dipterocarp 

forest”, a forest typical of elevations < 600 m asl. 

Among the identified species, 65.6% are 

either classified as lesser-known species, lesser-

used species, and/or species not listed under 

any of the commercial groups in the DENR 

Administrative Order 19 (1995). The list of 

underutilised tree species found in the QFLP is 

shown in Appendix 1. 

Community diversity of underutilised 

tree species was found higher than the whole 

QFLP tree assemblage (H’ = 4.01). Further, 

the dominance was distributed to 46 species 

(Simpson 1/D = 46.27) (Table 1). Computed 

Shannon’s evenness also implied that the 

community was highly heterogeneous (0.91) 

(Table 1). Using t-test formula specifically 

designed for comparing diversities (H’), it 

was found that there was significant difference 

between underutilised species and timber-

producing tree assemblage (Table 2). This 

affirms that the underutilised trees were indeed 

more dominant than the supposedly dominant 

commercial trees. 

In the sampling and surrounding areas, the 

underutilised and inferior timber species such 

as Balobo (Diplodiscus paniculatus), Magabuyo 

(Celtis luzonica), Binuang (Octomeles sumatrana) 

and Banato (Mallotus philippinensis) were the 

bigger dominant trees. This shows that (1) 

the forest is in fact secondary, i.e. it has been 

subjected to timber extraction, and (2) the 

Measure/index
Tree assemblage

Overall Commercial Underutilised

Abundance (N) 491 278 213

Number of species (S) 125 43 82

Shannon-Weiner index (H’) 3.90 2.61 4.01

Simpson’s reciprocal index (1/D) 20.11 n/a* 46.27

Shannon evenness (E) 0.81 0.69 0.91

Table 1	 Diversity summary of tree assemblages found in Qurino Forest Landscape Project (QFLP)

Table 2	 Hutcheson’s t-test results between the Shannon-Weiner indices of commercial and underutilised 

trees sampled in QFLP

Simpson’s reciprocal index (1/D) was not computed because model distribution of individuals in the sample was 1 per 

species, making the notion of dominance misleading

p-value (2-tailed) = 0.0000, df = degree of freedom

Underutilised Commercial 

t-value 13.7978 452.11

df 4.01 2.61

Variance 0.003   0.0074

Abundance 213 278
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secondary ecological succession of the QFLP 

forest is well underway since the underutilised 

trees are still colonising the forest landscape.

C-AGB of underutilised tree species in 

QFLP

Total C-AGB of underutilised species in QFLP 

was 1.502 t ha
-1
(Appendix 2), or approximately 

16 kg per standing tree. On per-species basis, the 

average C-AGB was 0.018 t (standard deviation 

(SD) = 0.0025). The combined C-AGB of the 

high-IV species was 0.059 t ha
-1
, almost 4.0% of 

the total carbon sequestered by all sampled trees 

in the QFLP.  Surprisingly, the underutilised 

trees with the lowest IVs comprised 6.9% 

of C-AGB (0.104 t ha
-1
) in QFLP study sites 

(Appendix 1). From these computations, we 

conclude that the more threatened species 

have more carbon-storing capacity than the 

ecologically dominant underutilised trees. The 

high C-AGB of low-IV underutilised species 

compared with high-IV counterparts affirm 

the management importance of lesser-known 

and/or lesser-used species in the QFLP. These 

species, having higher potential to sequester 

carbon, warrant protection, conservation and 

population enhancement.

Scanning of AGB and carbon sequestration 

studies yielded no comparative findings for the 

underutilised tree species. The estimated C-AGB 

of forests in Eden and Dibibi in Cabarroguis 

(also with commercial trees) are 263.67 and 

359.85 t ha
-1
 respectively (Manuel et al. 2019), 

while in Palali-Mamparang Range, the value 

is 45.12 t ha
-1 

(Oceana Gold Philippines 2016, 

unpublished report).

Forest cover change

Forest cover (open and closed types) in the 

QFLP for years 2000 to 2018 are presented in 

Figure 1. As per NAMRIA Land Cover Database, 

the closed forests in QFLP peaked at 67% in year 

2000 but dropped to just above 15% in 2010. 

The sudden loss of forest cover over this period 

could have been caused by widespread logging 

since the log export ban was temporarily lifted at 

the end of the 1990s. Nonetheless, forest cover 

began increasing until 2018. Unfortunately, this 

was the only available forest cover data from 

the NAMRIA provided by DENR at the time of 

study. The rise in forest cover may be attributed 

to logging moratorium and forestation projects 

that had been implemented by the provincial 

local government unit. The National Greening 

Program organised by DENR also conributed to 

the improvement of forest cover.

Using the formula by Puyravaud (2003), 

the grand moving average annual rate of forest 

cover change in QFLP was -0.033 ha year
-1
 

(SD = 0.06) (Appendix 3). This implies that 

despite restoration efforts over the recent years, 

QFLP forests still tend to decline. This may be 

Figure 1	 Summary of vegetation cover changes in the Quirino 

Forest Landscape Project (QFLP) from years 2000 to 

2018
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attributable to growing resource demands by 

the locals. This includes, among others, timber 

harvesting (for domestic purposes), land 

conversion, i.e. forest clearing to establish farms, 

and expansion of household areas. During 

field work, it was observed that livelihood of 

the community members was either adjacent 

to or within the forested sites. We also came 

across felled logs in the forest and wood being 

transported out. As local populations rise, 

demands for forest resources (including lands 

for farming and domiciles) are seen to increase 

correspondingly.

Interrelationships between carbon 

sequestration variables

The correlations among the forecast variables 

were analysed using Principal Components 

Analysis. (Figure 2, Tables 3a and b). Variance 

percentages showed that Principal Component 1 

(PC1) explained 99.86% of the interrelationships 

across the four forecast variables. All variables 

could be condensed into one dimension, i.e. 

PC1 and this alone could explain most of the 

values in all the forecast variables.

PC1 was correlated with total DBH. However, 

correlations of DBH to the rest of the variables 

under PC1 were very weak. Interestingly, tree 

girth was revealed to be negatively (albeit very 

weakly) correlated to C-AGB. This counter-

intuitive relationship can be explained by 

the concept of trade-offs. Trees in resource-

constrained environments must choose between 

allocating resources to growth (diameter) and 

biomass accumulation (carbon). A tree cannot 

maximise both at the same time. The pool of 

resources available for trees to allocate appears 

to be limited. A tree can choose to increase its 

diameter and become thick and strong at the 

expense of storing less carbon. A tree, on the 

other hand, can concentrate on accumulating 

carbon and biomass, resulting in a slenderer 

but potentially taller structure.

Forest lands do not necessarily expand with 

growing trees. Therefore, competition for space 

and nutrients affects the tree girth, abundance, 

density and, ultimately, the capacity to store 

carbon. In PC1, it was illustrated that DBHs of 

trees increased but other variables were stagnant 

(Table 3b). As mature trees occupy more basal 

area, less regeneration could be accommodated 

within existing forest areas. There may come a 

point where trees become so clumped that trees 

eventually fail to store carbon in their biomass. 

It further implies that density should always be 

at the optimum level to achieve the ideal carbon 

accumulation of the area.

Interpreting PC2 is somewhat disputable 

since the variances lodged in this dimension 

were only remainders (0.14%) of all variances 

Figure 2	 Scree plot of Principal Components Analysis 

of total DBH, abundance, density and rate 

of AGB accumulation measurements for 

underutilised species in QFLP
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across all forecast variables. Nonetheless, 

applying the concept of trade-offs, as abundance 

of trees increases, density remains at standstill, 

but girth and carbon storage correspond 

inversely.

Logical forestry sense dictates that the best 

way to ensure continual absorption of carbon 

into growing forest biomass is to expand the 

forest cover. By planting more trees at the 

fringes, juvenile trees are ensured proper 

spacing, and resource/nutrient allocation to 

facilitate growth, recruitment of more species, 

and carbon sequestration. 

Development of QFLUS
Carbon

 regression 

model

We propose that there are determinants 

of annual carbon stored in the biomass of 

underutilised species per unit area in the 

QFLP. Abundance, density, total DBH and 

rate of AGB accumulation affected by density 

are non-interdependent variables that can 

be used to develop the carbon accumulation 

model. For purposes of brevity, the model name 

QFLUS
Carbon

 was designated for “annual carbon 

stored in the biomass of underutilised species 

per unit area in the QFLP”. 

QFLUS
Carbon

 variables fitted well into the 

model with a r
2
 value of 0.986. This implies that 

the regression model, as a function of above 

variables, offers very precise forecasting power. 

Variance inflation factor (Table 4) above 10 may 

indicate multicollinearity issues across variables 

values, and values above 30 may indicate very 

strong problems with multicollinearity. Hair et 

al. (2013) suggests that variables having variance 

proportion values above 0.90 in the dimension 

with a high condition index are most likely to 

have collinearity. Collinearity diagnostics on 

the abovementioned variables suggest that rate 

of AGB correspond to abundance. This makes 

sense because density of trees in QFLP, after all, 

was derived from abundance data. Density of 

trees was in turn used to determine the annual 

rate of accumulation of AGB per species. 

Results of the regression modelling nonetheless 

accepted all the above variables due to strong 

forecasting power of the regression model. 

Essentially, apparent collinearity among forecast 

variables is well within acceptable limits. 

Expression of the QFLUS
Carbon

 model now 

assumes the syntax: 

0.021 – (0.005) TDBH – (0.00005202) abd + (.037) 

Rate.AGB + (.264) Density  

where, TDBH = total DBH (cm), abd = 

abundance, or number of individuals 

per species, Rate.AGB = the rate of AGB 

accumulation as a function of tree density, and 

Density = tree density or number of trees ha
-1 

(Table 5).

PC1 PC2 PC3 PC4 PC5

Total DBH 0.99901 -0.04441 5.03E-05 -4.47E-06 -8.74E-06

Abundance 0.044407 0.99901 -2.35E-05 -0.00035 -0.00014

Density 5.95E-06 0.000115 0.14705 -0.08723 0.98527

Rate of AGB accumultion 1.90E-05 0.000358 0.041146 0.99578 0.082022

Carbon-AGB -5.14E-05 -5.98E-06 0.98827 -0.02848 -0.15002

Table 3b	 Eigenvectors for all five principal components

Table 3a	 Ordination summary (Principal Components Analysis) of total DBH, abundance, density and 

rate of AGB accumulation measurements for underutilised species in QFLP 

PCA performed using PAST 3.2 software

PC Eigenvalue % variance

1 2311.75 99.858

2 3.29625 0.14238

3 6.03052E-08 2.6049E-09

4 3.39023E-08 1.4644E-09
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Use of model and forest cover change to 

forecast C-AGB in QFLP

At this point, the QFLUS
Carbon

 model, expressed 

as tonnes of carbon ha
-1
 year

-1
, is still regarded as 

“semi-final form” of the actual forecast model. 

This is because the spatiotemporal variables (i.e. 

forest area change and year progression) still 

need to be inserted into the equation. The final 

value should be expressed in tonnes of carbon. 

However, inserting spatiotemporal factors tend 

to compel the forecast model to incorporate 

even more complex and real-world factors such 

as tree growth curves, edaphic qualities and 

climate influences. Tree growth curves, which is 

generally considered sigmoidal, will vary across 

species and that by itself will complicate the 

model. Additional forest area, especially during 

initial years of planting, may not immediately 

provide carbon gain since trees would still be 

at their juvenile stage, and would be affected by 

many environmental factors. At present there is 

no single AGB or carbon model that completely 

incorporates these variables. This is the most 

pressing limitation of QFLUS
Carbon

. 

To curb this conundrum, we devised an 

oversimplified, but plausible approach to 

integrating forest cover change and time 

progression (expressed in years) to QFLUS
Carbon

. 

Assuming that all variables, i.e. computed 

abundance, total DBH, density and rate of 

AGB accumulation values are equal, the rate 

of annual forest cover change was factored 

in as min–max values to QFLUS
Carbon

, to 

obtain a QFLUS
Carbon

 value for a particular 

year (e.g. 2018). This by default integrates 

forest area increase/decrease. Since the forest 

cover data for 2020 was not yet available at 

the time of writing, the data for 2018 and the 

corresponding rate of forest cover change were 

used to forecast the 2020 QFLUS
Carbon

 value, as 

well as QFLUS
Carbon

 forest area requirements for 

the next 30 years (2050).

The forecasting was achieved by 

compounding the resulting possible change 

in forest cover (QFLUS
Carbon

* ± 0.033) of a 

particular year to succeeding years (2019, 

2020, 2021, 2022 and henceforth) using 

annual forest cover change. To minimise bias, 

the computed min–max multiplier of ± 0.033 

was randomised every year (which was easy 

to implement in MS Excel using the function 

RANDBETWEEN) to forecast future values up 

to year 2050. This procedure was reiterated 

100 times, then averaged to achieve a refined 

forecasted QFLUS
Carbon

 value, now expressed 

in tonnes of carbon. Resulting values are 

presented in Figure 3. 

The 30-year forecast data (2020 to 2050) 

showed that the average carbon sequestration 

in AGB of underutilised species of all forested 

areas in QFLP amounted to 228.88 kt C (SD 

= 3.70). The lowest forecasted QFLUS
Carbon

 

was 221.522 kt C; highest was 239.11 kt C. The 

resulting time series, despite the limitations 

discussed elsewhere in this paper, use strong set 

of forecasted QFLUS
Carbon

 values. 

The seasonality of values implies that the 

forest cover multiplier of ± 0.033 can impart 

strong fluxes in QFLUS
Carbon 

gain/loss. In a study 

by Johnston et al. (2019) it was forecasted that 

global forest net carbon capture would be 1.5 

and 6.8 Gt C year
-1
 by 2030 and 2065 respectively. 

The authors also identified various factors 

Table 4	 Collinearity diagnostics
a
 among QFLUS 

Carbon
 variables

a
Dependent variable: carbon in AGB; TDBH = total DBH regression analysis performed using SPSS v23 software

Model Dimension Eigenvalue
Condition 

index

Variance proportion

(Constant) TDBH 

(cm)

Abundance Annual 

rate of AGB 

accumulation

Density

1

1 4.040 1.000 0.01 0.01 0.00 0.00 0.01

2 0.695 2.410 0.18 0.01 0.00 0.00 0.07

3 0.141 5.347 0.25 0.71 0.00 0.00 0.22

4 0.110 6.073 0.03 0.20 0.04 0.09 0.61

5 0.014 17.227 0.54 0.08 0.96 0.90 0.09
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causing uncertainty in the projected changes 

in forest areas, such as the impact of socio-

economic drivers and climate policy objectives, 

as well as the interaction between forests and 

climate. Also, Singh et al. (2012) estimated net 

carbon accumulation in Madhya Pradesh forests 

up to 2025 and found that carbon accumulation 

would fall from 3465.232 Mt in 1991 to 3406.429 

Mt in 2025. The authors explained that the 

decline in carbon accumulation was significantly 

affected by changes in the forest cover area, 

structural change in the geographical area, 

changes in landuse and disproportionate 

variations in dense and open forests. Our results 

show that it is imperative for QFLP managers 

and stakeholders to maintain an annual increase 

in forest cover if the QFLP carbon capture 

service is to be prioritised, especially since the 

scenarios presented in Johnston et al. (2019) and 

Singh et al. (2012) papers are similar to QFLP 

forests. Hence, there is a likelihood that carbon 

sequestration potentials of the area may be 

hampered, unless proper utilisation, production 

and conservation strategies are implemented to 

increase forest cover. 

CONCLUSION AND 

RECOMMENDATIONS

The QFLP is a secondary forest dominated 

by underutilised tree species. The carbon in 

AGB of these underutilised species was not 

dependent on their ecological dominance. This 

means that overdensity and overabundance of 

trees can actually have a negative impact on 

landscape-level carbon sequestration. However, 

Table 5	 Coefficients of the multiple linear regression model 

Dependent variable: carbon in AGB; TDBH = total DBH, B = unstandardised regression coefficient, SE = standard 

error, Sig = significance level, VIF = variance inflation factor

Figure 3	 Forecasted carbon in AGB accumulation in QFLP (2020–2050); the figure shows projected 

carbon in aboveground biomass accumulation in QFLP for the next 30 years; the pathway shows 

the possible decrease and increase in carbon accumulation were greatly affected by the change 

in forest cover for the next years to come; average QFLUS
Carbon

 = 228.88 kt
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Model Unstandardised 

coefficient

Standardised 

coefficient

t Sig 95.0% Confidence 

interval for B

Collinearity

B SE Beta Lower

bound

Upper 

bound

Tolerance VIF

1 (Constant) 0.021 0 -0.992 274.313 0 0.021 0.021

TDBH (cm) -0.005 0 -0.992 -43.255 0 -0.005 -0.005 0.357 2.805

Abundance -5.20

E-05

0 -0.058 -0.893 0.374 0 0 0.044 22.86

Rate of 

annual AGB 

accumulation

0.037 0.139 0.017 0.266 0.791 -0.24 0.314 0.046 21.925

Density 0.264 0.185 0.042 1.428 0.157 -0.104 0.633 0.213 4.699
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those species that are more susceptible to local 

extirpation are also those that have a higher 

capacity to gain carbon.

Forest cover in QFLP is decreasing, likely 

due to expanding resource use by QFLP 

residents and a lack of enforcement of forestry 

policies to protect and manage forest cover. 

Regression analysis has shown that variables 

such as abundance, DBH, density and rate 

of AGB accumulation can be used to forecast 

future values of QFLP-level carbon capture. This 

model is precise enough to provide valuable 

insights into how to manage QFLP for optimal 

carbon sequestration.

To improve the predictive accuracy of the 

model and to ensure that the forest is managed 

in a way that maximises carbon sequestration 

and benefits local communities, the following 

recommendations are made: conduct extensive 

simulations, develop a predictive model 

that incorporates other variables, develop 

allometric equations for underutilised species, 

and use the research findings as a basis for forest 

management strategies and for developing 

policy options for underutilised species.

REFERENCES

Aalde H, Gonzales P, Gytarsky M et al. 2006. Forest land. 

Chapter 4 in Eggelston S et al. (eds) 2006 IPCC 

Guidelines for National Greenhouse Gas Inventories. 

Institute for Global Environmental Strategies, 

Hayama. 

Barrett TM. 2014. Storage and Flux of Carbon in Live Trees, 

Snags, and Logs in the Chugach and Tongass National 

Forests. General Technical Report PNW-GTR-889. 

USDA Forest Service, Portland.

Barrett TM & Christensen GA. 2011. Forests of Southeast 

and South-Central Alaska, 2004–2008: Five-Year Forest 

Inventory and Analysis Report. General Technical 

Report PNW-GTR-835. USDA Forest Service, 

Portland.

Bello C, Galetti M, Pizo MA et al. 2015. Defaunation 

affects carbon storage in tropical forests. Science 

Advances 1: e1501105. https://doi.org/10.1126/

sciadv.1501105

Brown S. 1997. Estimating Biomass and Biomass Change of 

Tropical Forests, a Primer. FAO Forestry Paper 134. 

FAO, Rome.

Fernando ES. 2008. Forest Formations of the Philippines. 

ASEAN–Korea Environmental Cooperation Unit, 

Seoul.

Hair JF, Ringle CM & Sarstedt M. 2013. Partial least 

squares structural equation modeling: rigorous 

applications, better results and higher acceptance. 

Long Range Planning: International Journal of Strategic 

Management 46: 1–12. https://doi.org/10.1016/j.

lrp.2013.01.001

Johnston C, Buongiorno J, Nepal P & Prestemon JP. 2019. 

From source to sink: past changes and model 

projections of carbon sequestration in the global 

forest sector. Journal of Forest Economics 34: 47–72. 

http://dx.doi.org/10.1561/112.00000442

Lasco RD, Macdicken G, Pulhin F, Guillermo IQ, Sales RF 

& Cruz RVO. 2006. Carbon stocks assessment of 

a selectively logged dipterocarp forest and wood 

processing mill in the Philippines. Journal of Tropical 

Forest Science 18: 212–221. 

Manuel RP, Pascual RL, Carig JG & Carig ET. 2019. 

Biodiversity assessment and functions of secondary 

forest ecosystems in Eden and Dibibi, Quirino, 

Philippines. Asian Journal of Biodiversity 9: 66–90. 

http://dx.doi.org/10.7828/ajob.v9i1.1235

Pivac S. 2010. Detection and solving of regression modeling 

problems in SPSS. Pp 914–919 in Proceedings of the 

33rd International Convention MIPRO. 24–28 May 

2010, Opatija.

Puyravaud JP. 2003. Standardizing the calculation of 

the annual rate of deforestation. Forest Ecology 

and Management 177: 593–596. https://doi.

org/10.1016/S0378-1127(02)00335-3

Rasmussen K, Bruun TB, Birch-Thomsen T et al. 2012. 

Analysis of the Potential for Sustainable, Cassava-Based 

Bio-Ethanol Production in Mali. Technical University 

of Denmark, Kongens Lyngby.

Rojo JC & Salvosa FM. 2011. Revised Lexicon of Philippine 

Trees. Department of Science and Technology, 

Laguna.

Serd (Sustainable Environment For Rural Development 

Foundation Incorporated). 2018. Quirino Forest 

Landscape Project 2018: Participatory Forest Assessment 

Technical Report. Forest Foundation Philippines, 

Makati. 

Singh AK, Jha RK & Gupta VB. 2012. Land use pattern 

and forecasting of carbon sequestration in 

Madhya Pradesh forests. International Journal of 

Multidisciplinary Research 2: 29–39.

Shrestha N. 2020. Detecting multicollinearity in regression 

analysis. American Journal of Applied Mathematics and 

Statistics 8: 39–42. http://dx.doi.org/10.12691/

ajams-8-2-1

Tashi S, Singh B, Keitel C & Adams M. 2016. Soil carbon 

and nitrogen stocks in forests along an altitudinal 

gradient in the eastern Himalayas and a meta‐
analysis of global data. Global Change Biology 22: 

2255–2268. https://doi.org/10.1111/gcb.13234

Vijayakumar DBIP, Raulier F, Bernier P et al. 2016. Cover 

density recovery after fire disturbance controls 

landscape aboveground biomass carbon in the 

boreal forest of eastern Canada. Forest Ecology 

and Management 360: 170–180. https://doi.

org/10.1016/j.foreco.2015.10.035

Yeom FBC. 1984. Lesser-known tropical wood species: how 

bright is their future. Unasylva 36: 3–16.



©Forest Research Institute Malaysia 127

Orpiano GB et al.Journal of Tropical Forest Science 36(1): 117—131 (2024)

Common name Scientific name Importance value

Alim
Melanolepis multiglandulosa var. 

multiglandulosa
0.81

Ambalag Pedicellia fuscescens 0.33

Anang Diospyros pyrrhocarpa 1.10

Anitap
8

Macaranga cumingii 0.32

Anongo Turpinia ovalifolia 1.34

Apaas Opar sp. 0.49

Apanang Mallotus cumingii 0.35

Aplas Ficus irisana 1.89

Babulo
1

Alseodaphne longipes 0.33 

Bagarilau Cryptocarya ampla 0.71

Bagna
6

Glochidion sp. 0.32

Balakat gubat
10

Balakata luzonica 0.31 (V)

Balobo Diplodiscus paniculatus 9.85 (V)

Banato Mallotus philippensis 1.65 

Bangkal Nauclea orientalis 0.37

Batag ukay Neo-uvaria acuminatissima 2.54

Bayok-bayokan Pterospermum niveum 0.35

Binunga Macaranga tanarius 1.70

Caimito Chrysophyllum cainito 0.40

Dalingsi Terminalia pellucida 1.84 (E; V)

Dangloi Pseuduvaria philippinensis 1.97 

Dangloi buntotan Pseuduvaria caudata 0.93

Dapdap Erythrina orientalis 0.39

Duguan Myristica philippensis 0.44 (E; V)

Dungon Heritiera sylvatica 0.85

Gangranada Punica granatum 0.52

Gatasan Garcinia venulose 1.16

Hagimit Ficus minahassae 3.08

Hamindang Macaranga bicolor 0.37 (E; V)

Hauili Ficus septica 0.33

Igyo Dysoxylum decandrum 0.48

Kaburo Phoebe sterculioides 0.67

Kalimutain Dysoxylum arborescens 1.15

Kalomata Clausena brevistyla 1.04

Kalubkob Syzygium calubcob 0.37

Kamulang Microcos stylocarpa 1.70

Kangko Aphanamixis perrottetiana 0.36

Kape Coffea arabica 4.22

Kapulasan Nephelium mutabile 0.34

Karaksan Linociera ramiflora 2.57

Appendix 1	 List of underutilised tree species identified in QFLP with their corresponding importance 	

values and conservation status as classified by IUCN

Continued
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Appendix 1	 Continued

Common name Scientific name Importance value

Katap Trigonostemon philippinensis 0.015

Katong Matsing Chisocheton pentandrus 2.76

Kobi Artocarpus nitida 0.34

Kulatingan Pterospermum obliquum 0.34

Kuling Baboy Dysoxylum altissimum 0.39

Laneteng gubat Kibatalia gitingensis 0.89 (V)

Ligas Semecarpus cuneiformis 0.35

Lukban Citrus grandis 1.31

Lunas Lunasia amara 0.34

Magabuyo
3

Celtis luzonica 6.27 (E; V)

Magilik Premna cumingiana 0.64

Makaasim
9

Syzygium nitidum 0.32

Malabuho Sterculia oblongata 0.65

Malaikmo Celtis philippensis 0.74

Malugai liitan Pometia pinnata 0.34

Manaring
5

Lithocarpus soleriana 4.35

Mangga Mangifera indica 1.24

Matang-hipon Breynia rhamnoides 0.34

Ngarusangis Cryptocarya cagayanensis 0.35

Pagsahing liitan
4

Discocalyx micrantha 5.02

Pagsahingin Canarium asperum 0.33

Pagsahingin bulog Canarium calophyllum 1.06

Pakiling Ficus odorata 0.36

Palindan Orania palindan 0.41

Palonapoi Lithocarpus castellarnauiana 1.27

Panan 0.41

Paronapin Mallotus tliifolius 0.54

Piling liitan Canarium luzonicum 2.53 (V)

Salaki Aglaia elliptica 0.33

Tabgun Ficus ruficaiulis 0.39

Takip asin Macaranga grandifolia 0.69 (E; V)

Taklang anak
7

Garcinia dulcis 0.32

Talot-ot Ficus variegata var. garciae 1.05

Tambalau Knema glomerata 0.33

Tangisang bayawak
2

Ficus variegate 6.37

Tangisang lakihan Ficus latsoni 0.63

Terminalia sp. Terminalia sp. 0.41

Tiagkot Abarema clypearia 0.44

Tibig Ficus nota 1.88

Tinaang-pantay Drypetes maquilingensis 0.36

Upling gubat Ficus ampelas 0.43

E = Endangered, CE = Critically Endangered, V = Vulnerable; 
1–5 

and 
6–10

 = top five underutilised species in QFLP with 

high and low importance values respectively
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Common name Scientific name Carbon in AGB (t)

Alim Melanolepis multiglandulosa var. multiglandulosa 0.018

Ambalag Pedicellia fuscescens 0.020

Anang Diospyros pyrrhocarpa 0.019

Anitap Macaranga cumingii 0.021

Anongo Turpinia ovalifolia 0.016

Apaas Opar sp. 0.018

Apanang Mallotus cumingii 0.020

Aplas Ficus irisana 0.016

Babulo Alseodaphne longipes 0.020

Bagarilau Cryptocarya ampla 0.019

Bagna Glochidion sp. 0.021

Balakat gubat Balakata luzonica 0.021

Balobo Diplodiscus paniculatus 0.009

Banato Mallotus philippensis 0.015

Bangkal Nauclea orientalis 0.020

Batag ukay Neo-uvaria acuminatissima 0.017

Batikuling Pterospermum niveum 0.018

Bayok-bayokan Macaranga tanarius 0.020

Binunga Chrysophyllum caimito 0.015

Caimito Terminalia pellucida 0.019

Dalingsi Pseuduvaria philippinensis 0.016

Dangloi Pseuduvaria caudata 0.019

Dangloi buntotan Erythrina orientalis 0.018

Dapdap Myristica philippensis 0.019

Duguan Heritiera sylvatica 0.019

Dungon Punica granatum 0.018

Gangranada Garcinia venulose 0.018

Gatasan Ficus minahassae 0.017

Hagimit Macaranga bicolor 0.018

Hamindang Ficus septica 0.020

Hauili Dysoxylum decandrum 0.020

Igyo Phoebe sterculioides 0.019

Kaburo Dysoxylum arborescens 0.020

Kalimutain Clausena brevistyla 0.017

Kalomata Syzygium calubcob 0.019

Kalubkob Microcos stylocarpa 0.020

Kamulang Microcos stylocarpa 0.017

Kangko Aphanamixis perrottetiana 0.020

Kape Coffea arabica 0.012

Kapulasan Nephelium mutabile 0.020

Karaksan Linociera ramiflora 0.019

Katap Trigonostemon philippinensis 0.015

Appendix 2	 Carbon in in aboveground biomass (AGB) of underutilised trees in QFLP

Continued
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Appendix 2	 Continued

Species Scientific name Carbon in AGB (t)

Katong matsing Chisocheton pentandrus 0.015

Kobi Artocarpus nitida 0.020

Kulatingan Pterospermum obliquum 0.020

Kuling baboy Dysoxylum altissimum 0.019

Laneteng gubat Kibatalia gitingensis 0.018

Ligas Semecarpus cuneiformis 0.020

Lukban Citrus grandis 0.020

Lunas Lunasia amara 0.020

Magabuyo Celtis luzonica 0.012

Magilik Premna cumingiana 0.020

Makaasil Syzygium nitidum 0.021

Malabuho Sterculia oblongata 0.020

Malaikmo Celtis philippensis 0.019

Malugai liitan Pometia pinnata 0.020

Manaring Lithocarpus soleriana 0.014

Mangga Mangifera indica 0.018

Matang-hipon Breynia rhamnoides 0.020

Ngarusangis Cryptocarya cagayanensis 0.020

Pagsahing liitan Discocalyx micrantha 0.013

Pagsahingin Canarium asperum 0.021

Pagsahingin bulog Canarium calophyllum 0.019

Pakiling Ficus odorata 0.020

Palindan Orania palindan 0.019

Palonapoi Lithocarpus castellarnauiana 0.020

Panan 0.019

Paronapin Mallotus tliifolius 0.018

Piling liitan Canarium luzonicum 0.014

Salaki Aglaia elliptica 0.020

Tabgun Ficus ruficaiulis 0.019

Takip asin Macaranga grandifolia 0.020

Taklang anak Garcinia dulcis 0.021

Talot-ot Ficus variegata var. garciae 0.016

Tambalau Knema glomerata 0.020

Tangisang bayawak Ficus variegate 0.010

Tangisang lakihan Ficus latsoni 0.018

Terminalia sp. Terminalia sp. 0.019

Tiagkot Abarema clypearia 0.019

Tibig Ficus nota 0.018

Tinaang-pantay Drypetes maquilingensis 0.020

Upling gubat Ficus ampelas 0.019
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Appendix 3	 Summary of vegetation cover changes in the QFLP from 2000 to 2018 and its computed 

annual rate of change using Puyravaud’s (2003) formula

Year Closed forest Open forest  Total Annual rate of change

Effective 

Area (ha) 

per 5 years 

interval

2000 15,468 7920 23,388  

2005 12,150 11,249 23,399 0.0000940432

2010 2327 12,344 14,671 -0.0933641061

2015 4099 6358 10,457 -0.0677202291

2018 6114 5337 11,451 0.0302684839

Average -0.033

SD 0.06

SD = standard deviation


