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SEO HS, PHUA MH, ONG R, CHOI B & LEE JS. 2014. Determining aboveground biomass of a forest
reserve in Malaysian Borneo using k-nearest neighbour method. This study examined the use of the
k-nearest neighbour (k-NN)method to estimate aboveground biomass of a logged-over tropical forest in Sabah,

Malaysia. To estimate aboveground biomass, field data as well as digital number and normalised difference

vegetation index (NDVI) values from Landsat TM-5 data were used to determine the optimum horizontal

reference area and thenumber of reference sample plots (k). An accuracy assessment showed that enhancing the

digital number valuewas superior to enhancing theNDVI value. Rootmean square errors of no filtering and 3× 3
filtering wereminimumwhen k = 4 and k = 5 respectively, when a horizontal reference area of 17 kmwas applied.

The bias was underestimated by 2.01 and 1.62 tonnes ha-1 for k = 4 and k = 5 respectively. Total aboveground

biomass of the forest management unit estimated by enhancing the digital number value was 6,873,299 tonnes

and average biomass density was 248.8 tonnes ha-1. The results suggest that the k-NNmethod is an alternative way

to estimate and map aboveground biomass of a forest management unit.

Keywords: Geographic information system (GIS), REDD+

SEO HS, PHUA MH, ONG R, CHOI B & LEE JS. 2014. Menentukan biojisim atas tanah hutan simpan
di Malaysia Borneo menggunakan kaedah titik terdekat k (k-NN). Kajian ini menggunakan kaedah titik
terdekat (k-NN) untuk menganggar biojisim atas tanah hutan tropika sudah kerja di Sabah, Malaysia. Bagi

menganggar biojisim atas tanah, data lapangan serta nilai nombor digital dan indeks tumbuhan beza ternormal

(NDVI) daripada data Landsat TM-5 diguna untuk menentukan kawasan rujukan mengufuk optimum dan

jumlah plot sampel rujukan (k). Penilaian ketepatan menunjukkan bahawa keputusan lebih baik jika nombor

digital ditingkatkan berbanding NDVI. Apabila kawasan rujukan mengufuk 17 km digunakan, nilai ralat punca

min kuasa dua tanpa penurasan serta dengan penurasan 3 × 3 adalah minimum apabila nilai k masing-masing
ialah 4 dan 5. Bias dikurang anggarmasing-masing sebanyak 2.01 tan ha-1 and 1.62 tan ha-1 apabila k = 4 dan k = 5.

Jumlah biojisim atas tanah unit pengurusan hutan yang dianggarkan denganmeningkatkan nilai nombor digital

ialah 6,873,299 tan danpurata ketumpatan biojisim ialah 248.8 tanha-1. Keputusanmencadangkan bahawa kaedah

k-NN dapat digunakan sebagai kaedah alternatif untuk menganggar serta memeta biojisim atas tanah unit

pengurusan hutan.

INTRODUCTION

Forests contain 85% of the global aboveground
carbon (Tan et al. 2007). Tropical forests are
important as carbon sinkand sourceofglobal carbon
cycling. Tropical deforestation and degradation
contribute 15—25% of global greenhouse emissions
per yeardue tounprecedentedchanges in landcover
and landuse (Malhi &Grace 2000,Houghton 2005).
Recently, the REDD (reducing emissions from
deforestation and forest degradation) programme,
which evolved into REDD+ (reducing emissions
from deforestation and forest degradation and
carbon stock enhancement), has included forest-

management activities which are considered
important global mechanisms to reduce if not stop
carbon emissions from deforestation and forest
degradation in the tropics (Stern 2007). Although
progress wasmadeduringnegotiations at theUnited
Nations Framework Convention on Climate Change
(UNFCCC)Conference of the Parties,major efforts
are still needed from the scientific community to
develop effective and rigorous systems to monitor
and predict changes in global forest carbon stocks
and evaluate the consequences of different
management strategies. Information on the amount
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and location of forest carbon at tier 3 necessitates the
useof remote-sensing technology.The tier represents
a levelofmethodologicalcomplexity forrepresenting
landuse areas. Tier 1 is the basic method, tier 2
intermediate and tier 3, most demanding in terms
of complexity anddata requirements.Tier3extends
tier 2by allowing landuse changes tobe trackedon
a spatial basis (IPCC 2006 ).
Field surveys undoubtedly produce the most

accurate biomass information but are also the most
labour intensive and timeconsuming.Moreover, it
is difficult to conduct such surveys in inaccessible
terrain and the resulting data are difficult to
interpolate over spatially large areas (Phua & Saito
2003).Remote sensingwithground inventorydata
is a reliable approach for estimating forest biomass.
Many forest biomass estimation studies have been
carried out using medium-resolution satellite data
such as Landsat, ALOS-PALSAR and Landsat ETM+
(Phua&Saito 2003,Alexandra et al. 2012). Previous
remote-sensing studies of forest biomass estimated
forest stock, leaf area index and stand age using
regression analysis (Powell et al. 2010). Regression
models for estimating aboveground biomass of
tropical forests have resulted from original spectral
bands or transformed vegetation indices from
medium-resolution satellite data. However, such
approaches tend to underestimate biomass content
in tropical forests due to dense canopy structure
(Gibbs et al. 2007).
Recent studies have utilised field surveys and

remotely-sensed data to estimate forest biomass of
unsurveyed areas or to increase statistical accuracy
(Holmgren et al. 2000, Tokola 2000, Lee et al.
2004). In particular, the k-nearest neighbour (k-NN)
method and the national forest inventory have been
applied to estimate forest biomass and construct
biomass thematics (Katila&Tomppo2001,Makela&
Pekkarinen 2004, Yim et al. 2007, Jung et al. 2010).
High- and mid-resolution satellite images have been
used tocreatecarbonmapsbasedonk-NNand linear
regression analyses in a catchment of the Siberian
forest tundra (Fuchs et al. 2009). The k-NNmethod
has been used with satellite spectral bands and
vegetation indices to estimate volumeof forest stands
and carbon storage (Franco-Lopez et al. 2001,
Thessler et al. 2008, Yoo et al. 2011). Despite its
potential, applicationof thek-NNmethodtoestimate
aboveground biomass of a tropical forest has been
insufficient. In this study, we examined the use of
k-NNmethodwithgeographic information system
(GIS) and satellite data to estimate aboveground
forest biomass of a production forest reserve in
Sabah, Malaysia. The k-NN estimation results of the
spectral bands and vegetation indexwere compared
with GIS data.

MATERIALS AND METHODS

Study area

The study area, Tangkulap Forest Reserve (FR), is
situated almost in the middle of Sabah, Malaysian
Borneo (Figure 1). Tangkulap FR is a class II
commercial forest reserve under the classification
of the Sabah Forestry Department. Climate of this
interior part of Sabah is characterised by frequent
rainfall and high temperatures throughout the
year. Tangkulap FR has an undulating to hilly
topography and is dominated by lowland mixed
dipterocarp forest with varying degrees of
degradation.
The forest management unit of Tangkulap FR

(27,550 ha) was licensed for conventional intensive
logging in 1970 and was divided into 57
compartments. Forests in the Tangkulap FR were
repeatedly logged until 2002 when the Sabah
Forestry Department decided to pursue low-
impact logging. Only one parcel of land is under
conservation (293 ha). Since 2002, no harvesting
has been conducted in Tangkulap FR. This
management decision was encouraged by the
success of Deramakot FR, located next to Tangkulap
FR, in obtaining a sustainable forest management
certification by the Forest Stewardship Council in
1997 (Lagan et al. 2007).

Field data

Figure 2 shows themethodology used in this study.
Field data from 32 circular permanent sample
plots, each with a radius of 20 m, were derived by
stratified random selection. Within these plots,
diameter at breast height (dbh) > 10 cm was
measured for all trees in 2008. The dbh
measurements were converted to aboveground
biomass (AGB, dry weight in kg) for each
individual tree using the allometric equation for
tropical rain forests as follows (Brown 1997):

AGB = e
-2.134 + 2.53 × ln(dbh)

(1)

The data also included longitudinal and
latitudinal positions for the centre of sample plots
using global positioning system (GPS) devices.
Field-measured biomass data were imported into
ArcGIS 10.0 to combine with GIS data using
coordinates (Table 1).

GIS and satellite data

GIS data that were used in this study included
forest compartment and subcompartment maps,
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Road network map
River network map Landsat TM-5 Field survey data

Compartment and
subcompartment map

Supervised classification
 - Forest
 - Non forest

Calculation of biomass

 Horizontal reference area
15 km/17 km/20 km

Low pass filtering
 - No filtering
 - 3 × 3 filtering

Calculation of k value
with HRA and spatial filtering

- DN - NDVI

Accuracy assessment with RMSE and bias

Selection of the number of k value

Estimation of aboveground biomass

Figure 2 Schematic methodology for estimating aboveground biomass using k-NN algorithm; DN = digital
number, NDVI = normalised difference vegetation index, RMSE = root mean square error
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Figure 1 The Tangkalup Forest Reserve of Sabah in Malaysia
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road networkmaps and river networkmaps with a
scale of 1:50,000. A Landsat 5 Thematic Mapper
(TM) satellite image, acquired on 11 October 2009
(path/row = 117/56), was used to provide forest
spectral information. TM sensor had a swath width
of 185 km and temporal resolution of 16 days. The
image consisted of seven bands and this study used
the digital number values of six bands with a spatial
resolution of 30 m. Band 6 (thermal infrared),
which had 120 m spatial resolution, was excluded
from our analysis.

Forest biomass estimation using the k-NN
method

The k-NNmethod is a non-parametric estimation
methodand iswell-known for classifyingdata from
target sampleplots (unobservedareas) to themost
analogous data values of researched reference
plots by utilising additional information such as
satellite images (Tomppo 1990). An advantage of
usingk-NNmethod for forestry applications is that
a precise estimate can be used instead of a regression
model estimation because the method estimates
target sample plots by referring to field survey plot
data (Tomppo 1990, Yim et al. 2007).

Establishment of the reference sample plot

Estimating forest information in a target sample
that is not surveyed using k-NN method requires
selecting a reference sample (Tokola & Heikkilä
1997, Katila & Tomppo 2001). Reference sample
plots was established based on degree of similarity
between digital number values of each satellite
image band for a target sample plot and a reference
sample plot (Yim et al. 2009). This study employed
the Euclidian distance equation to determine the
degree of similarity (equation 2):

dt, r = √∑
i=1

m

(xi, t — xi, r)
2

(2)

where dt, r = distance between target sample plots
(t) and reference sample plots (r); xi, t and xi, r =
digital number values of each band of t and r on a
spectral band i; andm=number of satellite bands.
Weight (w) was calculated based on dt, r as follows:

wt, r =

1

dt, r

∑
r=1

m 1

dt, r

(3)

Unobservedareaestimation(ŷt)was computed
by the k-NNmethodusing experimental value (yr)
and weighted value of each reference sample plot
(wt, r) (equation 4):

ŷt = ∑
r=1

k

wt, r × yr (4)

Many estimation studies have used image-
transformationmodel such as vegetation index to
estimate stock or forest biomass (Franco Lopez
et al. 2001, Yim et al. 2009, Yoo et al. 2011). We
appliedLandsatTMdigital number values and the
normalised difference vegetation index (NDVI)
to compare accuracy and estimate aboveground
biomass. The NDVI is one of the most widely used
parameters for estimating forest biomass production.
The NDVI is calculated by near infrared band
(NIR)andredbands(R)ofLandsatTMimagesand
is defined as:

NDVI =
(NIR − R)
(NIR + R)

(5)

Classification of horizontal reference area

In general, accuracy of estimated values using
k-NN method is affected by the size of target area
and the number of reference sample plots and
their spatial distribution (Tokola &Heikkilä 1997,
Tokola 2000, Yim et al. 2009, Jung et al. 2010). For
this purpose, horizontal reference area was divided
into three divisions (20, 17 and 15 km).

Spatial filtering

Spectral digital number values are affected by
atmosphere, image sensorerror,data transmission
and reception noise problems, particularly if the
forest is located in a mountainous area (Tokola &
Heikkilä 1997). Spatial filtering is required to

Table1 Field sampleplotnumbers by aboveground
biomass

Aboveground biomass

(tonnes ha-1)

n

≤ 200 11

201—300 13

301—400 5

≥ 401 3

Total 32
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reduce influence of these factors. Spatial filtering
refers to the mathematically defined kernels of
variation during rapid increase or decrease of
spatially consecutive pixels. Normal kernels have
odd numbers such as 3 × 3 or 5 × 5. The kernel
moves from pixel to pixel in an image and the
central pixel value is computed from values of the
member pixels. We applied a statistical verification
process using the 3 × 3 filtering method to remove
mixed-cell effects from digital number values.

Statistical verification

Cross-validation was employed to verify the
estimates furnished by k-NN method. Optimum
reference sample plot numbers (k) (Katila &
Tomppo 2001, Yim et al. 2009) and overall accuracy
were computed with a fifth matrix root mean square
error (RMSE) and the bias for estimating capacity
evaluation was computed using equations 6 and 7
(Franco Lopez et al. 2001, Yim et al. 2007):

RMSE = √∑
i=1

n

(yi — ŷi)
2

n
(6)

Bias =

∑
i=1

n

(ŷi — yi)
2

n
(7)

where yi = forest biomass field data measurement,

ŷi = forest biomass estimates using k-NN method
and n = number of reference sample plots.
Measurements and estimations of reference

sample plots were separated into four classes and
overall accuracies were computed and compared to
evaluate biomass measurements estimated from
the k-NN method.

RESULTS AND DISCUSSION

Optimum horizontal reference area and
number of reference sample plots without
filtering

Comparison of accuracy during changes in
horizontal reference area

The average RMSE value of aboveground biomass
using digital number values was lowest when
horizontalreferencedistancewas17km(100.8tonnes
ha-1) followed by 20 km (101.7 tonnes ha-1) and
15 km(103.8 tonnes ha-1) (Figure 3a). In contrast,

the RMSE of aboveground biomass using NDVI
valueswas lowestwhenhorizontal referencedistance
was 15 km (101.5 tonnes ha-1) followed by 20 km
(105.1 tonnes ha-1) and 17 km (105.3 tonnes ha-1)
(Figure 4a). Previous studies have reported that
RMSE tends to become smaller as horizontal
reference area increases (Katila & Tomppo 2001).
However, we found no significant difference in
accuracy of RMSE when the horizontal reference
area changed. Horizontal reference area of the
minimum RMSE results in variations in forest
structure, geographical conditions and sample plot
plans (Katila &Tomppo 2001). Previous studies have
been conducted at the national, city or county level
whereas the present study used a small regional area
as the analysis level. It seemed that using horizontal
distance had little influence on the study results.

Selection of number of reference sample plots

Minimum RMSE of forest biomass based on the
number of reference plots (k) decreased rapidly
when k = 1—4 at 17 kmhorizontal reference area in
the case of digital number. In contrast, RMSE
increased when k was > 4. Thus, k = 4 was selected
for the optimum reference plot where RMSE was
96.5tonnesha-1.RMSEofNDVIat15kmhorizontal
reference area decreased rapidly until k reached
1−3 andRMSE increased gradually when kwas > 3.
Thus, k = 3 was selected as the optimum reference
plot where RMSE was 99.4 tonnes ha-1. Reference
plot k values were distributed broadly in previous
studies based on target area size, but they mostly
fell in the range 5—10 (Franco-Lopez et al. 2001,
Katila & Tomppo 2001, Makela & Pekkarinen 2004,
Fuchs et al. 2009, Jung et al. 2010). RMSE tended to
decreasewith increasingnumberofreferencesample
plots regardless of spatial filtering. This result was
similar to those of Franco-Lopez et al. (2001) and
Katila andTomppo (2001). Bias for digital number
values was underestimated in all sectors except for
k = 1, indicating that bias was -2.0 tonnes ha-1 when
k = 4. Bias for NDVI values showed similar tendency
compared with that of digital number and the bias
was -3.7 tonnes ha-1 when k = 3.

Optimum horizontal reference area and
number of reference sample plots with
filtering

Comparison of the accuracy during changes in
horizontal reference area

The RMSE of aboveground biomass per ha using
digital number values showed similar results
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Figure 3 Root mean square error (RMSE) and bias for different horizontal reference area (HRA) divisions
and neighbour plot numbers by original image (left: RMSE, right: bias)
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compared with that of digital number without
filtering.AverageRMSEwas better in theorder 17,
20 and 15 km and the average RMSE values were
98.2, 98.8 and 106.5 tonnes ha-1 respectively
(Figure 3b). Accuracy of RMSE improved by
approximately 2.6 tonnes ha-1 after filtering. In
contrast, RMSE of aboveground biomass per ha
using NDVI was also similar to that of NDVI
without filtering. Average RMSE was better in the
order 20, 17 and 15 km, and the average RMSE
values were 103.6, 107.5 and 112.6 tonnes ha-1

respectively (Figure 4b). RMSE increased by
approximately 1.4 tonnes ha-1 after filtering.

Selection of the number of reference sample plots

Minimum RMSE of forest biomass based on
reference plots decreased rapidly when k = 2—5 at
horizontal reference area 17 km in the case of
digital number (3 × 3 filtering). In contrast, RMSE
increased when k > 5. Thus, k = 5 was selected for
the optimum reference plot where RMSE was
95.1 tonnes ha-1. RMSE improved by 1.4 tonnes
ha-1 after 3 × 3 filtering. However, RMSE of NDVI
(20 km horizontal reference area) decreased
graduallyuntil k =11.Therefore,we selectedk=11
as the optimum reference plot where RMSE was
99.4 tonnes ha-1.
Digital number bias tended to be underestimated

with k > 4. The digital number bias was -1.6 tonnes
ha-1 when k = 5. Bias accuracy improved by
approximately 0.4 tonnes ha-1 after filtering
whereasNDVIbiaswasoverestimated inall sectors.
NDVI bias was 4.6 tonnes ha-1 when k = 11.

Estimated aboveground biomass of the
tropical forest

Total biomass estimated by k-NN method was
7,144,032 tonnes for digital number (no filtering)

and 7,467,254 tonnes for NDVI (no filtering).
Average forest biomass per ha was 258.6 and
270.3 tonnes ha-1 respectively. Compared with
estimates conducted with reference plots, total
biomass was overestimated by approximately
100,000—400,000 tonnes and average forest biomass
per ha was overestimated by approximately
3—15 tonnes ha-1. Biomass estimates were applied
with spatial filtering. Biomass estimated for digital
number was 6,873,299 tonnes (3 × 3 filtering) and
for NDVI, the value was 7,091,543 tonnes (3 × 3
filtering). Average forest biomass per ha was 248.8
and 256.7 tonnes ha-1 for digital number and NDVI
respectively (Figure 5, Table 2). Compared with
estimates conducted with reference plots, the digital
numberestimate (3×3 filtering)wasunderestimated
by approximately 200,000 tonnes and average forest
biomassperhawasunderestimatedbyapproximately
6.3 tonnes ha-1.
Forest biomass per ha in the forest management

unit was 259.1 tonnes ha-1 for digital number (no
filtering) and 263.4 tonnes ha-1 for NDVI (no
filtering) (Figure 6). Biomass per ha in the forest
management unit was 248.1 tonnes ha-1 for digital
number (3 × 3 filtering) and 257.3 tonnes ha-1 for
NDVI (3×3 filtering).Biomassdecreased11.0 and
6.1 tonnes ha-1 after 3 × 3 filtering.
Overall accuracy of the biomass estimated using

k-NN method was 31—59%, which was comparable
with the 41% result by Franco-Lopez et al. (2001).
The producer's accuracy values for NDVI (no
filtering = 38%, 3 × 3 filtering = 77%) and digital
number (no filtering=92%,3×3 filtering=100%)
were highest at 201—300 tonnes ha-1 range
(Table 3). According to the index transformation
comparison, digital number (no filtering) with a
basicbandvaluewashigher thanNDVIby25%(no
filtering) in the overall accuracy. Additionally,
overall accuracy of digital number value was 9%
higher than that of NDVI when 3 × 3 filtering was

Table 2 Comparison of aboveground biomass (AGB) estimated from field survey and
k-nearest neighbour (k-NN) method

Method AGB (tonnes ha-1) AGB

(tonnes)
Mean Minimum Maximum Standard

deviation

Field survey (n = 32) 255.1 127.4 505.9 91.8 7,047,342

k-NN

DN No filtering 258.6 127.5 505.9 37.7 7,144,032

3 × 3 filtering 248.8 127.4 505.9 37.3 6,873,299

NDVI No filtering 270.3 127.4 505.9 80.5 7,467,254

3 × 3 filtering 256.7 127.4 505.8 41.3 7,091,543

DN = digital number, NDVI = normalised difference vegetation index
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(a) DN without filtering (b) NDVI without filtering

(c) DN with 3 × 3 filtering (d) NDVI with 3 × 3 filtering
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Figure 5 The distribution of aboveground biomass by image enhancement: low, medium and high values in
biomass represent white, grey and black colour respectively; DN = digital number, NDVI =
normalised difference vegetation index
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(a) DN without filtering (b) NDVI without filtering

(c) DN with 3 × 3 filtering (d) NDVI with 3 × 3 filtering
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Figure 6 The distribution of aboveground biomass for each forest management unit after various image
enhancement; DN = digital number, NDVI = normalised difference vegetation index
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applied. This result was similar to that of Yoo et al.
(2011)whileFranklin(1986)reportednocorrelation
between spectrum values and stands with closed
crowns which resulted in an estimation error.

CONCLUSIONS

We estimated the aboveground biomass and
distribution of tropical forest in a production
forest reserve using k-NNmethod in combination
with field survey data, Landsat TM-5 image
spectral bands and GIS data. The k-NN method
determined the number of reference plots based
on RMSE and bias to select an optimum k value
according to thehorizontal referencearea settings
and filtering. NDVI (3 × 3 filtering) had smaller
RMSE values as the horizontal reference area range
decreased, whereas digital number (3 × 3 filtering)
value showed the opposite tendency. RMSE had a
tendency to decrease as k value increased and the
effect of filteringwas significant. Furthermore,RMSE
and bias analyses showed that applying spectral band
using k-NNmethodwasmore effective than applying

NDVI. Therefore, we need to further examine how
these changes (e.g. sample number and location)
affect the accuracy of results obtained using k-NN
method with different sample plot numbers and
locations. Remotely-sensed data such as Aster and
Spot that have similar resolution with Landsat TM-5
should also be considered in developing alternative
methods for biomass estimation. Nevertheless, k-NN
methodwith the existing field survey data is useful to
estimate aboveground biomass of unobserved areas
for mapping forest management or regional units.
Therefore,applyingthisapproachinamultitemporal
context can be an effective tool that allows
measurements of carbon emissions and verification
of the reduction in emissions.
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Table 3 Accuracy assessment of aboveground biomass (AGB) estimated from k-nearest
neighbour (k-NN) method

Estimated AGB (tonnes ha -1) Reference AGB (tonnes ha -1)

≤ 200 201—300 301—400 ≥ 401 Total Producer's

accuracy

DN No filtering ≤ 200 4 - - - 4 1.00

201—300 7 12 4 2 25 0.48

301—400 - 1 1 - 2 0.50

> 401 - - - 1 1 1.00

Total 11 13 5 3 32

User's accuracy 0.36 0.92 0.20 0.33 0.56

3 × 3 filtering < 200 4 - - - 4 1.00

201—300 7 13 4 2 26 0.50

301—400 - - 1 - 1 1.00

> 401 - - - 1 1 1.00

Total 11 13 5 3 32

User's accuracy 0.36 1.00 0.20 0.33 0.59

NDVI No filtering ≤ 200 4 2 - - 6 0.67

201—300 3 5 3 1 12 0.42

301—400 3 6 - 1 10 0.00

> 401 1 - 2 1 4 0.25

Total 11 13 5 3 32

User's accuracy 0.36 0.38 0.00 0.33 0.31

3 × 3 filtering < 200 4 - - 1 5 0.80

201—300 6 10 4 1 21 0.48

301—400 1 3 1 - 5 0.20

> 401 - - - 1 1 1.00

Total 11 13 5 3 32

User's accuracy 0.36 0.77 0.20 0.33 0.50
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