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Due to the high uncertainty of tree crown biomass modeling, it is crucial to estimate individual tree crown 
biomass by incorporating competition factors using mixed effect models. The crown biomass of 128 sampling 
trees was investigated at three typical sites of the natural Pinus kesiya   forest in Pu’er city of Yunnan province, 
China. Considering the random effects of the site index and incorporating competition factors, the branch 
and needle biomass models were constructed using the nonlinear mixed effect model. The results showed 
that: (1) the mixed effects models, including the fixed effect of competition factors, had a better fitting 
performance than the ordinary mixed model for branch biomass, however, mixed effects models without 
the fixed effect of competition factors had the best-fit performance for the needle biomass; (2) mixed effect 
models incorporating competition factors had better prediction ability because of the highest precision. The 
increase in accuracy varied from 49.87 to 70.27% for branch biomass and from 66.19 to 66.57% for needle 
biomass. Mixed-effects models, considering site effect and competition factors, may provide a flexible and 
powerful tool for individual crown biomass estimation.
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INTRODUCTION

Forest biomass is one of the most basic quantitative 
characteristics of the forest ecosystem, reflecting 
the complex relationship between forest matter 
circulation and energy flow, and an essential 
element of studying the carbon sequestration 
ability of the ecosystem and the function of the 
carbon sink (Chave et al. 2003, West 2009). Forest 
carbon storage is closely related to its capacity 
for carbon sequestration, which in turn depends 
on forest biomass and carbon fraction (Fu et al. 
2017a, Courard-Hauri et al. 2016). Generally, the 
carbon contents of different species are similar. 
Thus estimating forest biomass has become the 
most critical issue for estimating forest carbon 
storage (Zou et al 2015). Furthermore, tree 
biomass estimates are the basis for forest carbon 
inventories and estimation, which help to clarify 
the roles of forests and improve sustainable forest 
management (Henry et al. 2015, Temesgen et 
al. 2015). Therefore, accurate forest biomass 
estimation can provide foundation data for 
forest carbon inventories and promote further 

understanding of the carbon cycle of the 
ecosystems (Fu et al. 2014). 
 Biomass equations play an essential role in 
forest carbon estimation in the future (Temesgen 
et al. 2015). Therefore, research on biomass 
measurements and estimates will increase in 
the coming years to meet the needs of carbon 
storage estimation, and provide a valuable tool 
to understand the carbon cycle of terrestrial 
ecosystems (Ou et a1. 2016). Although destructive 
measurement could gain more accurate biomass 
data, it is challenging, time-consuming and 
laborious. Thus, biomass is often assessed using 
two indirect approaches, i.e., the biomass factor 
method or biomass models (Somogyi et al. 
2007). Many studies have summarised many 
biomass models based on previous studies, and 
more than 2600 biomass models have been 
established worldwide, involving more than 100 
tree species (Ter-Mikaelian & Korzukhin 1997, 
Jenkins et al. 2003). In these models, the most 
common variables used to estimate biomass 
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are both diameter at breast height (DBH) and 
tree height (H). Few models have considered 
the environmental factors into the models. 
Moreover, biomass models have the worse 
fitting and prediction performance, especially 
for the components, except for wood or stem. 
Thus, it is vital to construct a better estimation 
by incorporating environmental factors into the 
models.
 Estimation of tree crown biomass is the focus 
and difficulty of biomass research. On one hand, 
in terms of the significance of crown biomass 
estimation, the crown is the main part of the trees 
for photosynthesis and respiration. Its structure 
and distribution in stands not only directly 
determine the individual form, productivity and 
vitality of trees, but also affect the distribution 
pattern of populations (Wang et al. 1990, Kramer 
1966). At the same time, crown biomass is an 
essential component of forest biomass and carbon. 
Crown biomass and its distribution partly affect the 
productivity of forest ecosystems, which are also 
vital evaluation indicators of leaves’ photosynthetic 
efficiency (Li 2004). Therefore, it is of great 
significance to further study crown biomass.
 On the other hand, tree biomass is affected by 
tree size, geographic region, stand origin, crown 
density and site quality (Fu et al. 2014, Ma et al. 
2018). Especially, site quality and competition 
are two of the most critical factors for tree 
growth. Competition can affect forest community 
structure by interacting with biotic and abiotic 
factors (Sahney et al. 2010). Competition index 
is important to explain the change in stand 
structure and is a helpful tool for predicting 
the development of individual trees (Pukkala 
& Kolström 1987, Biging & Dobbertin 1995). 
Many studies have reported that competition 
significantly affects tree crown characteristics 
(Hasenauer & Monserud 1996, Gill et al. 2000, 
Paulo et al. 2002, Fu et al. 2017b). With the 
increase in stand density, individual trees could 
be restricted in their crown growth, and even 
die (Bragg 2001). Crowns grow narrower with 
stronger competition, thus, crown biomass can be 
affected by competition (Deleuze et al. 1996). In 
addition, the site quality of forestland can reflect 
its capacity to grow trees, and the site index is 
one of the most commonly used indexes for 
evaluating site quality (Carmean 1975). Timilsina 
et al. (2013) found that site index negatively 
correlated with DBH growth. Wirth et al. (2002) 
found that site quality effected the distribution 

pattern of aboveground net primary production 
for Siberian Scots pine. The biomass model is the 
most common method to estimate tree crown 
biomass, leading to more extensive variability 
in crown biomass measurement and estimation, 
due to the difficultly of accurate measurement 
compared with wood or stem of the tree. Thus, 
considering the effect of competition factors 
on crown biomass, it is immensely significant to 
construct high-precision crown biomass models. 
The forest growth and harvest model is a set 
of equations describing the law of forest or 
stand growth. The mixed effect model has been 
developed rapidly and is widely used in medicine, 
agriculture, economy, forestry and other fields 
(Littell et al. 1996). The mixed effects model 
could reflect not only the average change 
trend of the overall data but also the individual 
difference by variance and covariance structures 
because of inclusion of both fixed and random 
effects (Yang & Huang 2018). It has advantages 
over other models in dealing with irregular 
and unbalanced data and analysing the data’s 
correlation. It also shows flexibility in analysing 
repeated measurements and longitudinal data 
and satisfying assumptions (Li 2009).
 Meanwhile, the method performs better in 
fitting and estimating than the ordinary fixed 
effect model (Zhang & Borders 2004, Fehrmann 
et al. 2008, Pearce et al. 2010, Fu et al. 2012, 
2014). At present, the mixed effect model is 
widely used in forestry research. However, the 
research mainly focused on the fundamental 
tree measurement factors, such as individual 
tree and stand’s tree height variable, diameter 
and sectional area, volume and accumulation, 
etc. (Fehrmann et al. 2008, Pearce et al. 2010,  
Fu et al. 2012, 2014 ). Moreover, only a few studies 
have focused on crown biomass. Thus, it is of 
great significance to construct a high-precision 
biomass model for estimating and mastering the 
changing law of biomass of tree crowns. 

MATERIALS AND METHODS

Subject investigated 

Simao pine (Pinus kesiya), a geographic variation 
of P. kesiya in China, is distributed mainly over 
Southern and Western Yunnan province, and 
also Laos, Northern and Central Vietnam 
(Xue & Jiang 1988, Wang et al. 2019). It is the 
representative species of the southwest mountains 
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of the subtropical zone in China. It is also one of 
the main afforestation species in Yunnan. Simao 
pine forest has significant economic, ecological 
and carbon sink values (Wu & Dang 1992, Wen 
et al. 2010, Yue & Yang 2011). Simao pine is a 
particular forest type in Yunnan natural forests. 
The distribution area and volume account for 
11% of the woodland area in Yunnan (Xue & 
Jiang 1988). Moreover, the mature natural forest 
has higher stability.

Study sites

Three typical sites in the main distribution area 
of Simao pine forests were selected (Figure 1). 
All sites belong to Pu`er city, Yunnan province 
of Sothern-Western China, and are located at 
N 22° 02′ to N 24° 50′, E 99° 09′ to E 102° 19′. 
The altitudes are from 317 m to 3370 m, and 
the Tropic of Cancer traverses the middle. Due 
to the influence of the subtropical monsoon 
climate, there is no frost in most areas, with mild 
winter and summer, thus, holding the excellent 
reputation of ‘the pearl of the green sea’ and 
‘natural oxygen bar’. The means of annual 
temperature range from 15 to 20.3 °C, and the 
yearly gross precipitations range from 1100 mm 
to 2780 mm (Ou et al. 2015).

Data investigation and measuring

The 128 sample pines in 45 plots located in 
three sites were selected, cut and investigated. 
The information of the plots, including latitude, 
longitude, degree of slope and aspect of slope 
were recorded, and the tally of each plot was 
investigated. The average height of dominant 
trees (Ht) and the average age of stands (A) 
were calculated to obtain the site index (SI). The 
sample tree information, including diameter at 
breast height (DBH), tree height (H), crown 
length (CL) and crown width (CW) were 
recorded. Besides, the neighboring trees within 
5 meters of the sample trees were measured, 
and the tree species, their DBH and H, and the 
distance from the sample trees were recorded.
The biomass of the branches and needles was 
measured one by one. According to Meng 
(2006), the fresh weight of the branches and 
needles are measured in three parts according to 
crown length. Then, the samples were taken to 
determine the rate of water content according to 
the different parts. The samples were then taken 
to a laboratory and put in an oven to dry at 105 oC.  
Finally, the branch and needle biomass, and 
the basic statistics of the sampling trees were 
calculated, as listed in Table 1. 

Figure 1 Map of the study sites
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Table 1 Basic characteristics of the sampling trees

Variables Min. Max. Mean

Age/a 8.00 82.00 39.46

Diameter at breast 
height/cm

4.40 58.30 27.20

Tree height/m 6.10 37.00 19.00

Crown length/m 2.30 20.50 9.09

Crown width/m 2.00 19.72 8.34

Data calculation

The site index of each plot was calculated using 
Equation (1) according to Wang (2003). The 
competition index of Hegyi was selected to reflect 
the competition of the sampling trees using 
Equation (2) (Hegyi 1974).

 
SI = Ht × exp

15.46
A
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where SI is the site Ht index,  is the average stand 
height of the dominant trees, and A is the average 
age of the stand. In this study, the basal age is 20 
years, CIi is the competition index, DISTij is the 
distance between tree i to tree j. Di is the DBH of 
sample tree,  is the DBH of the competition tree 
j around the sample tree i.

Model fitting 

The study selected DBH, H, CL and CW of the 
sampling trees to construct various models, 
respectively, and used determination coefficient 
(R2) and root mean square error (RMSE) to 
select the optimal models as the general model 
(GM) (Table 2). Furthermore, The site effect 
was determined as a random effect, and the 
mixed-effects models without the fixed effect of 
competition factors (MEM) were constructed 

according to Pinheiro and Bates (2000). Mixed 
parameters, variance structures (including power 
and exponential function), and covariance 
structures (including Gaussian, spherical and 
exponential function) were selected using S-Plus 
software. Finally, based on MEM, the mixed-
effects models with fixed effect of competition 
factors (MEMC) were built by incorporating the 
competition factors of the individual trees, which 
were regarded as fixed effects and were added to 
estimating parameters of MEM.

Model evaluation and validation

For the fitting indices, including log likelihood 
(logLik), Akaike information criterion (AIC) 
and Bayesian information criterion (BIC) were 
selected to evaluate their performance, and the 
formulas are listed in Equation (3)–(5).

 logLik = ln L(θ̂  L,x) (3)

 AIC = –2 ln L(θ̂  L,x) + 2q (4)

 BIC = –2 ln L(θ̂  L,x) + q × lgn (5)

where θ̂  L is the maximum likelihood estimation  
of θ̂  for the likelihood function of model  
L(θ̂  L,x), x is a random sample, q is the number 
of the unknown parameter, and n is the number 
of the sample.
 For the model validation, the study selected 
four indices, such as, sum relative error (RS), 
mean relative error (EE), mean relative absolute 
error (RMA) and predict precision (P), to reflect 
the prediction performance of the models (Ou 
et al. 2014). The formulas are listed in Equation 
(6)–(9).
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Table 2 Fitting results of parameters of the basic branch and needle biomass models

Model a b c d R2 RMSE

Wbr = a × DBHb × Hc 0.001 4.347 1.514 - 0.814 1772.128

Wb1 = a × DBHb × Hc × (CWc CL)d 0.555 1.993 2.053 0.273 0.432 28.792
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where yi is the observed value, ŷi is the predicted 
value, ŷi is the mean of the predicted value,  
ta is the t value at a confidence level with a = 0.05, 
N is the number of the sample, T is the parameter 
numbers of models.

RESULTS

Basic mixed-effects model (MEM)

Fitting results of different parameters combined by 
selecting mixed parameters are listed in Table 3.  

According to the principle, the smaller the AIC 
and BIC, the bigger the logLik, which is better. The 
optimal fitting results emerged when parameter 
c was regarded as the mixed parameter of the 
branch biomass model (AIC = 942.9418, BIC = 
955.5507, logLik = -466.4709). When parameter d 
is the mixed parameter, the needle biomass model 
had the best fitting performance (AIC = 578.1188, 
BIC = 593.2496, logLik = -283.0594). 
 The fitting results of covariance structure 
showed that none can improve the precision 
of models whether it is spherical, Gaussian or 
exponential function (Table 4), and covariance 
structure was not added to both branch and 
needle biomass models. While considering 
variance structures, the models had a better 
fitting with lower AIC and BIC. The optimal 
fitting results emerged when the power function 
was regarded as the variance structure for the 
branch and needle biomass model (Table 4). 

Table 3 Mixed parameters selection of the branch and needle biomass models

Components No. Mixed parameters AIC BIC logLik

Branch

1 a 956.1888 968.7978 -473.0944

2 b 944.4905 957.0994 -467.2452

3 c 942.9418 955.5507 -466.4709

4 a, b 946.4905 961.6213 -467.2453

5 a, c 944.9417 960.0724 -466.4708

6 b, c 944.9417 960.0725 -466.4709

7 a, b, c 946.9418 964.5944 -466.4709

8 — 954.1888 964.2760 -473.0944

Needle

1 a 578.1255 593.2562 -283.0627

2 b 578.1189 593.2496 -283.0595

3 c 578.1255 593.2562 -283.0627

4 d 578.1188 593.2496 -283.0594

5 a, b 580.1189 597.7714 -283.0595

6 a, c 580.1255 597.7780 -283.0627

7 a, d 580.1188 597.7714 -283.0594

8 b, c 580.1189 597.7714 -283.0595

9 b, d 580.1188 597.7714 -283.0594

10 c, d 580.1188 597.7714 -283.0594

11 a, b, c 582.1189 602.2932 -283.0595

12 a, b, d 582.1188 602.2931 -283.0594

13 a, c, d 582.1189 602.2932 -283.0594

14 b, c, d 582.1189 602.2932 -283.0594

15 a, b, c, d 584.1189 606.8149 -283.0594

16 — 586.1255 608.7344 -288.0627

logLik = log likelihood
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Mixed-effects  model  incorporat ing 
competition factors (MEMC)

The study took competition factors of an 
individual tree as fixed effects and added them 
into estimating parameters of MEM. Different 
combinations with competition factors were 
fitted into the models, and both optimal models 
for branch and needle were selected and listed 
in Equations (10) and (11): 

 Wbr = a × DBHb × Hc+uc+c1×Cl (10)

 Wbl = a × DBHb+b1×Cl × Hc+uc+c1×Cl ×(CW2CL)d+uc        (11)

where Wbr is individual branch biomass, Wbl is 
individual needle biomass, DBH is tree diameter 
at breast height, H is tree height, CW is crown 
width, CL is crown length and CI  is competition 
index of the individual tree.
 Moreover, the branch biomass mixed-effects 
model with fixed effect of competition factors 
had a lower value of AIC but had a more 
significant value of BIC and logLik than MEM, 
however, the difference was negligible. While, 
for the needle biomass, the mixed-effects model 
with fixed effect of competition factors had a 
significant improvement in model fitting, and it 
differed significantly from MEM with an excellent 
fitting result (AIC = 441.4767, BIC = 464.1728, 
logLik = -211.7383). Furthermore, considering 
the variance and covariance structures, the 
appropriate optimal results of the branch 
biomass model was the model with variance 

Table 4 Comparison of mixed-effects models with random effects from site index for the branch and needle  
  biomass 

Models
Branch Needle

No.
Random 
effects

SI

R-Matrix

Variance 
structure

covariance 
structure

AIC BIC logLik AIC BIC logLik

1 No No No 954.1888 964.2760 -473.0944 586.1255 608.7344 -288.0627

2 Yes No No 942.9418 955.5507 -466.4709 578.1188 593.2496 -283.0594

3 Yes Power No 818.2164 833.3471 -403.1082 438.5645 456.2170 -212.2822

4 Yes Exponential No 830.3617 845.4924 -409.1808 445.3331 462.9856 -215.6665

5 Yes No Gaussian 944.9424 960.0731 -466.4713 580.1193 597.7718 -283.0597

6 Yes No Spherical 944.9429 960.0736 -466.4714 580.1201 597.7726 -283.0601

7 Yes No Exponential 944.9423 960.0730 -466.4711 580.1191 597.7716 -283.0596

8 Yes Power Exponential 820.2004 835.3161 -403.1002 440.5565 458.20633 -212.2782

AIC = Akaike information criterion, BIC = Bayesian information criterion, logLik = log likelihood, SI = site index

structure of power function and covariance 
structure of spherical function (AIC = 815.4262, 
BIC = 835.6005, logLik = -399.7131). The optimal 
fitting results of the needle biomass model 
occured when only the power function was 
considered as variance structure (AIC = 441.4727, 
BIC = 464.1688, logLik = -211.7363) (Table 5). 

Model evaluation

All mixed-effect models were better than a basic 
model in fit indices (Table 6), and MEMC was the 
optimal branch biomass model. However, MEM 
was the optimal for needle biomass. Mixed effect 
models had a better prediction performance 
than the basic model for branch biomass because 
of the lower error indices and higher prediction 
precision. The BM had lower values of error 
indices for needle biomass, and the differences 
among the three models were minor. The MEMC 
had the highest estimation precision for both 
branch and needle biomass, and the values were 
70.27 and 66.57%, respectively (Table 6). The 
model parameters and the fitting indices of the 
basic and mixed effect models for both branch 
and needle biomass are listed in Table 7.

DISCUSSION

Many studies showed that the mixed-effects 
modeling approach could obtain a more accurate 
estimation than traditional approaches, even 
though only one random effect was considered 
(Zhang & Borders 2004, Wirth et al. 2004, 
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Table 5 Comparison of mixed-effects models incorporating competition factor as fixed effect for the branch  
 and needle biomass

Models
Branch Needle

No.
Random 
effects

SI

Competition 
factors

R-Matrix
Variance 
structure

Covariance 
structure

AIC BIC logLik AIC BIC logLik

1 Yes No No No 942.9418 955.5507  66.4709 578.1188 593.2496 283.0594
2 Yes Yes No No 942.8683 955.9991 466.4342 441.4767 464.1728 211.7383
3 Yes Yes Power No No convergence 441.4727 464.1688 211.7363
4 Yes Yes Exponential No 824.4370 842.0895 405.2185 454.2895 476.9856 218.1447
5 Yes Yes No Gaussian 946.8687 964.5212  66.4343 443.4442 468.6621 211.7221
6 Yes Yes No Spherical 946.8690 964.5215 466.4345 443.4441 468.6619 211.7220
7 Yes Yes No Exponential 946.8688 964.5213 466.4344 443.4444 468.6622 211.7222
8 Yes Yes Power Spherical 815.4262 835.6005 399.7131 443.3073 468.5252 211.6537

AIC = Akaike information criterion, BIC = Bayesian information criterion, logLik = log likelihood, SI = site index

Table 6 Model evaluation results for the branch and needle biomass

Indices

Branch Needle

Basic model
Mixed effect 
model with 

SI effect

Mixed effect 
model with 

SI effect and 
competition 

factors

Basic model
Mixed effect 

model with SI 
effect

Mixed effect 
model with 

SI effect and 
competition 

factors

Fitting
AIC 954.1888 818.2164 815.4262 576.1255 438.5645 441.4727

BIC 964.2760 833.3471 835.6005 588.7344 456.2170 464.1688
logLik -473.0944 -403.1082 -399.7131 -283.0627 -212.2822 -211.7363

Validation

RS 46.50 3.08 5.39 10.22 9.13 11.04
EE 30.45 4.81 4.95 13.61 17.37 23.26

RMA 64.10 31.00 28.89 53.35 54.08 56.90
P 49.87 69.27 70.27 66.19 65.73 66.57

AIC = Akaike information criterion, BIC = Bayesian information criterion, logLik = log likelihood, SI = site index  

Fehrmann et al. 2008). The previous findings 
were consistent with the results of this study. 
In this study, it was found that the site quality 
had been considered as a random effect and 
incorporated into the model, and the mixed 
effect models had a better fitting performance 
than basic models for both branch and needle 
biomass. It indicated that site quality affects the 
crown biomass. The findings were similar to 
the study by Ou et al. (2016) who reported that 
model fitting can be improved by incorporating 
random effects with a region or site quality, or 
both, for the aboveground biomass of the natural 
Simao pine forest.
 Moreover, forest biomass estimation variations 
can be observed significantly due to different 
ecological zones and sites, and site quality affects 
tree growth and distribution that influences 
aboveground biomass (Alves et al. 2010, ). 

For example, the total biomass of Nothofagus 
antarctica decreased as site quality declined, and 
the aboveground components (stems and leaves) 
allocated more biomass in the best sites. Zou et al. 
(2015) pointed out that modeling crown biomass 
was significantly different in four pine species 
growing in different regions in China, and the 
different site quality may be the cause of it. Thus, 
site quality greatly determines live tree biomass 
(de Castilho et al. 2006).
 Many studies have shown that aboveground 
competition strongly affects trees’ productivity 
and reproductive capacity (Nötzold et al. 1997, 
Pattison et al. 1998, Delucia et al. 1998). On the 
other hand, plants preferentially allocate biomass 
to organ harvesting, the most limiting resource 
according to the ‘optimal partitioning’ and 
‘popular biomass allocation’ theories (Thornley 
1972). The biomass allocation would prefer tree 
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crowns with little light and tree roots with limited 
nutrients or water. It indicates that competition 
may have a meaningful impact on the biomass 
allocation of trees. Thus, competition would 
be the critical factor in improving tree crown 
biomass estimation.
 This shows that the mixed-effect model has 
better fitting performance and adaptability than 
the traditional model in tree crown biomass 
estimation. The mixed-effect model can provide a 
better prediction performance by incorporating 
random effects (Calama & Montero 2004, Yang 
& Huang 2011). Fu et al. (2014) also found that 
the mixed effect model has better adaptation 
than ordinary least squares models, and fits by 
considering environment differences. Moreover, 
a few mixed-effect models incorporated 
environmental factors (e.g., topographical 
and climatic factors) to obtain a better fitting 
(Ou et al. 2016, Fu et al. 2017b). The models 
incorporating the fixed effect of the competition 
factor have better prediction ability with higher 
precision. Especially, for the branch biomass, 
the prediction accuracy of the mixed models is 
more than 38.9% higher than that of the basic 
model. Ou et al. (2014) built the individual 

branch and needle biomass models of the natural 
Pinus kesiya forests using ordinary least square 
and geographically weighted regression. The 
mean relative absolute error of the mixed effect 
models in this study were lower than the models 
in the study by Ou et al. (2014). Therefore, it 
indicates that environmental factors can be used 
to improve biomass estimation for individual tree 
crowns. Furthermore, the results were consistent 
with other studies on tree height, DBH, volume, 
the dominant height of the stand, stand volume 
and forest biomass using the mixed effect model 
(Mehtätalo 2004, Fehrmann et al. 2008, Pearce 
et al. 2010, Fu et al. 2012, Fu et al. 2014, Ou et 
al. 2016). 

CONCLUSIONS

To obtain accurate models for the individual tree 
crown biomass, the branch and needle biomass 
of 128 sampling trees were investigated in natural 
Pinus kesiya. The mixed effect model technology 
was applied by considering the random effects 
of the site index and incorporating competition 
factors. The fitting performance of the crown 
biomass can be improved by using mixed effect 

Table7 Fitting parameters of branch and needle biomass models

Parameters

Branch biomass models of individual tree Needle biomass models of individual tree

Basic  
model

Mixed effect 
model with 
site quality 

effect

Mixed effect 
model with site 
quality effect 

and competition 
factors

Basic  
model

Mixed effect 
model with site 
quality effect

Mixed effect 
model with Site 

quality effect 
and competition 

factors

a 0.0010 0.0842 0.0747 0.5550 0.1720 0.1122

b 4.3470 3.3107 3.2338 1.9930 1.3604 1.4546

b1 -1.5140 -1.5294 — — — 0.0044

c — — -1.4239 -2.0530 -1.2612 -1.3153

c1 — — 0.0006 — — -0.0034

d — — — 0.273 0.4199 0.4445

AIC 954.1888 818.2164 815.4262 586.1255 438.5645 441.4727

BIC 964.276 833.3471 835.6005 608.7344 456.217 464.1688

logLik -473.0944 -403.1082 399.7131 -288.0627 -212.2822 -211.7363

D matrix — D = 0.0223 D = 0.0268 — D = 0.0376 D = 0.0385

Heteroscedastic 
function value 

(power function)
— 0.7880 0.9137 — 1.0913 1.0925

Covariance 
function value

— — Range = 1.4962 — — —

Residual error — 1.1018 0.6787 — 0.4679 0.4651

AIC = Akaike information criterion, BIC = Bayesian information criterion, logLik = log likelihood
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models with random effect of site quality and 
fixed effect of competition based on basic 
models. While the prediction precision could 
be significantly increased for branch biomass, 
the differences were not apparent for needle 
biomass. Therefore, the mixed effect models 
incorporating site effect and competition factors 
could provide a more accurate estimation for the 
individual crown biomass.
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