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Biological data are usually heterogeneous, fluctuating and have outliers. When these data are examined using 
least squares regression models, difficulties often arise in identifying the impact of regressors on specific 
segments of the point cloud. Traditional models cannot be applied when regression assumptions are not 
met. The objective of this study was to examine the robustness of quantile regression (QR) in modelling data 
with high presence of extreme values. Using QR and least squares methods (ordinary and non-linear), we 
evaluated the change in biomass contents in different organs of mahogany (Swietenia macrophylla). The results 
suggest that QR significantly reduces the mean absolute error and the leverage effect. It also identifies the unit 
impact of the regressor on a specific quantile of the distribution. One of the main novelties of this approach 
was that greater interpretative capacity was possible for the different sectors of the conditional distribution, 
especially for those points far from the mean and the median, revealing more detailed behavioural patterns 
of the response variable. With this information, the rate of change of one variable due to the unit change 
of the other is more clearly understood.

Keywords: Biomass prediction, correction of heteroscedasticity, leverage effect correction, forest modelling,  
 reducing the effect of outliers

INTRODUCTION

Regression analysis using least squares method 
in its linear or non-linear form is widely used 
in forestry to model variables of interest as 
functions of several predictors. Examples of such 
variables include biomass or carbon accumulated 
in plant biomass (Chave et al. 2005), timber 
volume available for industrial har vesting 
(Zianis et al. 2005), and many other variables 
of interest to foresters. The input data in model 
building in forestry or similar areas are often 
heterogeneous, fluctuating and have outliers. 
Moreover, acquiring these data can be costly  
for forest owners or managers (Robinson & 
Hamann 2010).
 It is highly desirable to have analytical tools 
that allow users to optimise resources in forestry. 
Ordinary least squares (OLS) is one of the most 
widely applied methods in this field. However, 
when using OLS, some assumptions must be met, 
including homogeneity of the error variance and 
independence of errors. Also, although it is not 

essential, it is desirable that the independent 
variables have a normal distribution (Osborne 
& Overbay 2004, Osborne 2013). If these 
assumptions are not met, the use of OLS is not 
appropriate (Cade & Noon 2003). Faced with this 
challenge, the data analyst can choose to either 
transform the data in order to meet the OLS 
requirements or apply another method. Forcing 
the application of OLS can create problems such 
as the construction of weak models due to the 
leverage caused by extreme values (Everitt & 
Skrondal 2010).
 The use of quantile regression (QR), has 
only been scarcely applied in forestry to make 
predictions, despite giving successful results 
(Mäkinen et al. 2008, Bohora & Cao 2014, Cao 
& Dean 2015, Gao et al. 2017, Zhang et al. 2020). 
In fact, QR could be a complementary technique 
to the use of OLS. In other fields, QR has been 
used to examine the relationship between 
environmental factors and live organisms 
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(animals or plants) (Schröder et al. 2005). It is also 
used to study density changes in live organisms 
as a function of ecological patterns (Cade  
et al. 1999, Cade & Noon 2003); diversity and 
invasiveness of plant communities (Brown & Peet 
2003); prediction of the maximum growth rates 
of marine phytoplankton (Bissinger et al. 2008); 
and prediction of the probability of biological 
impairment based on habitat assessments (Doll 
2011). In recent years, proposals have emerged 
to strengthen the analysis capabilities of QR, 
including the Bayesian approach (Yu & Moyeed 
2001) and the use of machine learning algorithms 
in random forests (quantile regression forests) 
(Meinshausen 2006). The use and application of 
QR has now been extended to the construction 
of prediction intervals for finite samples, without 
making distributional assumptions (Romano  
et al. 2019).
 QR estimates a regression line for each 
quantile of interest in the distribution of a 
response variable in the model (Koenker 2000). 
It, therefore, provides a more accurate picture of 
the possible strong relationship between variables, 
allowing more precise calculations of growth 
curves and other reference values for estimating 
functional associations between dependent and 
independent variables (Cade & Noon 2003). 
QR has advantages compared to conventional 
regression techniques, for example, in-depth 
insight into the effects of the covariates that are 
often missed with conventional linear regression. 
QR allows construction of prediction intervals, 
fulfilling at all times the bases of inferential 
statistics, including regression, robustness and 
extreme value theory (Yu et al. 2003, Benoit & 
Van den Poel 2009, Das et al. 2019).
 In this study we intended to help answer 
some questions that a forest analyst often faces 
such as: (1) how to build a robust model when 
the data show several extreme values, (2) how to 
build a robust model when the data are widely 
fluctuating or if the residuals do not follow a 
normal distribution, and (3) which is the impact 
of a regressor at a specific point or segment 
in the variable of interest. By answering these 
questions, the information generated by the 
analyst is important to improve the decision-
making capabilities of the forest manager. As 
a contribution to achieve this objective, in 
this work, we examined the efficacy of QR to 
predict the number of leaves and the biomass of 
mahogany (Swietenia macrophylla).

MATERIALS AND METHODS

Variables and sample

A random sample of 1000 nine-month-old 
seedlings of S. macrophylla were used for this study. 
We measured four variables, namely, diameter at 
the stem base (DB, mm), diameter of the stem at 
the height of the first live leaf or twig (DFL, mm), 
total height (TH, cm) and length of the leafless 
stem (LSL, cm). These data were obtained 
from a plant nursery located at the Higher 
Technological Institute of Venustiano Carranza, 
north-west of the State of Puebla, Mexico (20°  
30' N, 97° 40' W), at an average elevation of 113 m  
above sea level. This nursery is located within 
the Neotropical ecoregion, on the north-eastern 
coastal plain of the Gulf of Mexico. The climate 
is tropical, with rains during seven months of the 
year (mainly in summer) and mild temperature 
oscillations. The diameters of the seedlings were 
measured to the nearest 0.5 mm, while the heights 
were approximated to the nearest millimeter. A 
total of 42 independent specimens were selected 
at random and destructively sampled to measure 
the biomass components. For this purpose, these 
specimens were separated into three components, 
namely, (1) stems, (2) roots and (3) leaves and/
or twigs. Each component was weighed fresh and 
after oven drying at 60 oC (since seedlings are 
softer than wood) to constant weight, using an 
analytical balance with approximation to 0.01 g, 
following the standard method (Brown & Lugo 
1984, Acosta et al. 2002).

Data analysis

To examine the relationship between the 
dependent and independent variables listed in 
Table 1, we followed the steps below:
(1) Independent variables that had the strongest 

association with the dependent variables 
were identified. For this, we used the 
non-parametric covariation coefficient C 
(equation 1), proposed by Gregorius et al. 
(2007):

 

	 ∑i<k(Xi – Xj). (Yi – Yj)
C = ––––––––––––––––––––
	 ∑i<j |(Xi – Xj). (Yi – Yj)| 

(1)
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  The C values range from -1 to +1, with C 
equals to 1 for strictly positive covariation 
and C equals to -1 for strictly negative 
covariation (Gregorius et al. 2007). It should 
be noted that, prior to the correlative study, 
the raw data showed high variability and 
marginal distribution of both variables was 
not uniform (as the dimensions of the plants 
increased, the variability also increased). 
Table 1 provides an overview of such data.

(2) Each dependent variable was modelled as 
a function of its selected predictor (in the 
previous step) using QR and the results were 
compared to those of least squares methods 
in both its OLS and non-linear forms (NLS). 
The lm and nls functions of R were used 
to adjust OLS and NLS respectively. The 
fitted non-linear equation was taken from 
the general allometry with two parameters 
of the form y = axb, proposed by Huxley 
(1950). 

  The QR, on the other hand, was computed 
with the rq function of the quantreg package of 
R, generating regression lines in the quantiles 
0.10. 0.25, 0.50, 0.75 and 0.95, where the 
syntax was rq(y ~ x, data = dataset, tau = τth 
quantile). For quantile 0.10, the R code was 
rq(y ~ x, data = dataset, tau = 0.10). Examples 

for both, fitting and obtaining the graphs in 
R, can be found in Koenker (2013). 

  Equations (2) and (3) reproduce the 
initial mathematical reasoning of the quantile 
regression. Let Y be a random variable, 
characterised by its original distribution 
function,

  F(y) = Prob (Y ≤ y) (2)

  Let τ be a particular Y value, then for any 
τ the following expression is called the τth 
quantile of X,

  Q(τ) = inf {y:F(y) ≥	τ} (3)

  Similar to the original distribution 
function, the quantile function also provides 
a complete characterisation of the random 
variable (Y) (Koenker 2000). Finally, the 
quantile function may be formulated as the 
solution to a simple optimisation problem. 
Full description of the QR equation, the 
graphic illustration of its verification function, 
and other expressions derived from equations 
(2) and (3), are presented and explained in 
Koenker and Bassett (1978), Koenker (2000) 
and Koenker and Hallock (2001).

Table 1 Descriptive statistics of Swietenia macrophylla variables used in the analyses

Variable Unit
Variable 

type
Min Max Mean SD Sk SW p-value

                                                                   Data used for modelling the number of leaves

Number of leaves - DV 1.00 22.00 9.01 3.51 0.60 < 0.0001*

Diameter at the stem base (DB) mm IV 1.90 6.90 4.14 0.88 0.14 0.0166*

Total height (TH) cm IV 9.00 56.00 37.03 8.56 -0.75 < 0.0001*

                                                             Data used for biomass modelling

Diameter at the stem base (DB) mm IV 2.32 5.40 4.39 0.93 -1.03 0.0185*

Total height (TH) cm IV 6.500 11.600 7.479 1.608 0.004 0.0205 *

Diameter of the stem at the height 
of the first live leaf or twig (DFL)

mm IV 2.04 4.88 3.56 0.91 -0.45 0.1285

Length of the leafless stem (LSL) cm IV 11.00 30.50 20.44 5.82 -0.20 0.0790

Leaf and twig biomass g DV 0.080 1.630 0.912 0.408 -0.135 0.694

Stem biomass g DV 0.110 1.470 0.729 0.303 -0.070 0.760

Root biomass g DV 0.150 2.390 1.210 0.568 0.050 0.725

Total biomass g DV 0.710 5.130 2.851 1.193 -0.111 0.425

SD = Standard deviation, Sk = skewness value, SW = Shapiro–Wilk’s test, * = data does not follow a normal distribution  
(p < 0.05), DV = dependent variable in the regression, IV = independent variable in the regression
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(3) To find the most suitable quantile model 
for the different sectors of the conditional 
distribution, we identified which τth model 
minimised the prediction error for each 
of the observed values. The label "a" was 
assigned to the ith value where the error was 
minimal with τ = 0.10. The label "b" was used 
for the ith value where the error was minimal 
with τ = 0.25, and so on for the other three 
modelled quantiles and so, for τ = 0.95, the 
ith value with the minimum error was labelled 
with the letter "e".

(4) Parametric estimators were recalculated for 
each sector of the conditional distribution 
(pooled in the previous step) and are 
reported in the results section as QR 
coefficients.

(5) To assess the robustness of the models, we 
analysed graphics and numerical results for 
evidence of the significant contribution of 
each independent variable in each model. 
As goodness of fit, we calculated the root 
mean square error (RMSE), mean absolute 
error (MAE) (in the traditional way using 
residuals), the quantile–quantile plots 
(Q–Q plots) and the Akaike information 
criterion (AIC) (Akaike 1974). In addition, 
we generated confidence and prediction 
bands (95%) for each regression line.

(6) Finally, we compared the averages of 
the MAEs by the Kruskal–Wallis test, to 
demonstrate whether or not there was any 
significant difference between the MAEs 
given by QR and the least squares models.

 In order to reduce the probability of obtaining 
false positive results or Type I errors, in all cases, 
we used Bonferroni corrected significance levels 
(Huberty & Morris 1989, Koenker 2013). For 

this, we divided the original α value (α = 0.05) 
by the number of hypotheses (m) in order to 
get the Bonferroni corrected values (Hochberg 
1988). This significance level was only used as a 
reference value and not as a rigid dichotomous 
rule of rejection or non-rejection. To assess the 
statistical insignificance of a predictor, the p-value 
against the null hypothesis was observed. A value 
sensibly close to zero suggests very low evidence 
against the null hypothesis (Antúnez et al. 2021).

RESULTS

Examination of the size of the correlation 
coefficients (C) (Table 2) shows that DFL is 
the regressor most closely correlated with the 
response variables, followed by DB. By contrast, 
LSL was the least correlated regressor with any 
dependent variable, although it was significant in 
relation to the number of leaves (Table 2). Since 
there was a high correlation between DFL and 
DB, as well as between TH and LSL, we included 
only one of these pairs in the regression model 
(the one with the highest correlation coefficient 
with the dependent variable). 
 Tables 3 and 4 show estimators of the 
parameters of the regressors filtered by the size 
of significant coefficient C. These parameters 
indicated the impact that a marginal change in 
each explanatory variable had over plant biomass 
and the number of leaves, while maintaining the 
remaining explanatory variables constant.
 Figures 1a and b show examples of relationship 
between one plant attribute and one variable of 
interest, according to the unitary effect of each 
covariate in each quantile. The horizontal axes 
of Figures 1a and b show the quantile values, 
and the vertical axes show the initial parameters 
estimated by QR. The contours of the scatter 

Table 2 Values of correlation (C) and their respective probability values 

Variable
 

Number of leaves Leaf and twigs 
biomass

Root biomass Stem biomass Total biomass

C p-value C p-value C p-value C p-value C p-value

DFL 0.579 0.02 0.680 < 0.0002* 0.724 < 0.0002* 0.600 0.002 0.737 < 0.0002*

DB 0.556 < 0.0002* 0.530 < 0.0002* 0.635 < 0.0002* 0.601 < 0.0002* 0.641 < 0.0002*

TH 0.467 < 0.0002* 0.631 < 0.0002* 0.582 < 0.0002* 0.284 1.3 0.570 < 0.0002*

LSL -0.180 < 0.0002* 0.240 2.42 0.292 1.14 0.125 8.52 0.501 1.98

DFL = diameter of the stem at the height of the first leaf or live twig, DB = diameter at the base, TH = total height, LSL 
= leafless stem length, C = covariation coefficient with 10,000 permutations; * = significant coefficients (after Bonferroni 
correction)
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Table 3 Parametric and goodness-of-fit indicators for each one of the adjusted models

Variable and 
adjustment indicator

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.95 OLS NLS

Model to predict the number of leaves

DFL 1.537* 2.079* 2.548* 3.171* 4.082* 2.614* 4.958*

AIC 435.087 233.724 429.326 553.946 496.156 4867.388 4959.604

RMSE 0.915 0.420 0.553 0.796 1.654 2.849 2.986

MAE 0.732 0.350 0.464 0.664 1.188 2.229 2.359

Model to predict leaf and twig biomass

DFL 0.134* 0.227* 0.265* 0.307* 0.359* 0.262* 0.068*

AIC -3.425 -27.143 -25.003 -20.081  -12.777 10.775 2.452

RMSE 0.160 0.050 0.039 0.063 0.045 0.263 0.237

MAE 0.122 0.043 0.033 0.054 0.034 0.204 0.178

Model to predict root biomass

DFL 0.157* 0.275* 0.347* 0.419* 0.491* 0.352* 0.092*

AIC -4.772 -13.283 -27.339 -19.087 -2.667 33.608 13.136

RMSE 0.129 0.082 0.072 0.067 0.105 0.347 0.270

MAE 0.086 0.069 0.065 0.056 0.086 0.280 0.222

Model to predict stem biomass

DB 0.094* 0.136 * 0.166 * 0.200* 0.279* 0.170* 0.037*

AIC -15.819 -12.756 -39.046 -35.744 2.316 -9.070 -24.356

RMSE 0.080 0.045 0.040 0.052 0.158 0.206 0.171

MAE 0.070 0.040 0.036 0.042 0.159 0.160 0.128

Model to predict total biomass

DFL 0.456* 0.708* 0.857 * 0.943* 1.020* 0.823* 0.214*

AIC -1.094 -0.277 -13.649 -12.807 3.782 85.007 66.588

RMSE 0.175 0.195 0.108 0.059 0.237 0.649 0.519

MAE 0.150 0.152 0.096 0.051 0.175 0.531 0.435

τ = model of the τth quantile adjusted by quantile regression (QR), OLS = model adjusted by ordinary least squares,  
NLS = model adjusted by non-linear least squares, DFL = diameter of the stem at the height of the first live leaf or 
twig, DB = diameter at the base, AIC = values of the Akaike information criterion, RMSE = root mean square error,  
MAE = mean absolute error; * = significant coefficients; for NLS, the variables are transformed (exp, log, square root, 
squared and cube); only results of the models that show the lowest mean absolute error are reported here and, in most 
cases, it happened when the predictor was raised to the squared

Table 4 Parametric and goodness-of-fit indicators for allometric model to predict the number of leaves as  
 a function of the total height of 1000 nine-month-old seedlings of S. macrophylla

Model constant and 
adjustment indicator

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.95 NLS

a 0.085* 0.382* 0.646* 0.748* 0.913* 0.585*
b 2.249* 1.607* 1.441* 1.489* 1.535* 1.516*
AIC 421.872 284.981 481.510 579.121 506.718 5027.397
RMSE 0.859 0.484 0.606 0.836 1.636 3.088
MAE 0.710 0.423 0.530 0.704 1.258 2.435

τ = model of the τth quantile adjusted by non-linear quantile regression (QR), NLS = model adjusted by non-linear least 
squares, letters a and b = constants of the general allometric equation, AIC = value of the Akaike information criterion, 
RMSE = root mean square error, MAE = mean absolute error; * = significant constants after Bonferroni correction
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plot, outlined in grey, indicate the lower and 
upper limits of the 95% confidence bands for 
each estimator derived from QR. The middle 
horizontal line represents the mean, estimated 
by the OLS method, and the two extreme 
dashed lines correspond to the upper and lower 
limits of the 95% confidence intervals of this 
estimator. Due to heteroscedasticity, the values 
of the parameters estimated for the QR models 
are different for each quantile (Tables 3 and 4). 
However, the QR parameter estimated at the 
median (τ = 0.5) was generally close to the line 
of the estimator of the OLS mean (Figures 2a–d). 
 Most parameters estimated by QR fell within 
the confidence interval of the OLS estimator of 
the conditional mean, like the diameter at the base 
against the stem biomass (Figure 1a), but not so 
in diameter of the stem at the height of the first 
live leaf against the number of leaves (Figure 1b).
 Observing the adjustment indicators of the 
models, AIC, RMSE and MAE, it can be seen 
that the QR indicators of any line corresponding 
to any τth quantile are much better than the 
values obtained for the corresponding general 
model adjusted by OLS or NLS (Tables 3 and 
4). Likewise, the Kruskal–Wallis test showed 
significant reduction in the MAE given by QR 
models compared with the OLS and NLS. 
Differences of the means are significant in both 
cases considering a level of significance of 0.05 
(Figure 3).
 The values of AIC indicate that the joint effect 
of a given set of covariates differs greatly between 
different quantiles (Table 3). For instance, in the 

model of number of leaves the AIC values were 
233.724 and 429.326 respectively for the quantiles 
0.25 and 0.50, while much larger AIC values were 
obtained for the 0.75 and 0.95 quantiles (553.946 
and 496.156 respectively). The AIC values were 
also used to determine the quantile which had a 
better fit. Based on their AIC values, the models 
of the 0.25, 0.50 and 0.75 quantiles were more 
robust than the models of the 0.10 and 0.95 
quantiles (Table 3).
 In addition to the numerical adjustment 
indicators (Tables 3 and 4), evaluation of the 
predictive power of each QR model by a Q–Q 
plot showed that most of the residual values of 
the models were within the 95% confidence 
range. Yet, high variability of the data increased 
the prediction error, as is the case of Figure 4a, 
where the difference between the QR modelled 
distribution (dotted line) and the ideal distribution 
(straight central line) was minimal. Conversely, in 
Figure 4b, the difference was greater, and many 
values were outside the confidence band.
 Finally, when comparing the residuals in 
a single plot, those of QR had homogeneous 
distribution while those obtained by OLS and 
NLS showed heteroscedasticity. To illustrate this, 
using stem biomass data (continuous data), it was 
observed that extreme quantile models (0.10, 
0.95) reduced the effects of outliers (Figure 5).

DISCUSSION

In this study, we modelled the response of 
variables against changes in predictors, even 

Figure 1 Parametric coefficients estimated by QR for (a) diameter at the base (DB), to predict stem biomass, 
and (b) diameter of the stem at the height of the first live leaf or twig (DFL), to predict number of 
leaves of Swietenia macrophylla; confidence bands (shaded area) of the QR in comparison with the 
95% confidence intervals of the mean (dashed lines) estimated by ordinary least square

(a) (b)
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Figure 2 Scatter plots and regression lines fitted to different quantiles (τ) for (a) number of leaves as a function 
of the diameter of the stem at the height of the first live leaf or twig (DFL), (b) total biomass as a 
function of the diameter of the stem at the height of the first live leaf or twig (DFL), (c) number 
of leaves as a function of the diameter of the stem at the height of the first live leaf or twig (DFL), 
splitting the scatter plots according to the zone of influence of each QR; (d) total biomass as a 
function of the diameter of the stem at the height of the first live leaf or twig (DFL), splitting the 
scatter plots according to the zone of influence of each QR; each subset must be predicted using 
the parameters of the corresponding quantile line of that data segment

Figure 3 Comparison of averages of the mean absolute errors (MAEs) by the Kruskal–Wallis test; OLS––MAE 
of models adjusted by ordinary least square, NLS––MAE of models adjusted by non-linear least 
square and QR––MAE adjusted by quantile regression

(a) (b)

(c) (d)
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Figure 4 Examples of quantile–quantile plot for a variable of interest predicted as a function of a predictor; 
(a) number of leaves predicted as a function of the diameter of the stem at the height of the first 
live leaf or twig in the quantile 0.10, and (b) stem biomass predicted as a function of diameter at 
the base in the quantile 0.10

Figure 5 Example of residuals plot versus predicted values that resulted in predicting the stem biomass as a 
function of diameter at the base; OLS––residuals obtained by ordinary least squares, NLS––residuals 
obtained by non-linear least squares and QR––residuals obtained by quantile regression

within the extreme values of the distribution 
and with highly variable data (Table 1). For this 
purpose, we generated regression lines for each 
portion (quantile) of the distribution, including 
central and extreme quantiles (Figures 2a–d). 
This approach is more accurate than the use of 
a unique regression line to explain the effect of 
a predictor on a specific zone of the conditional 
distribution (Tables 3 and 4). This could be 
considered an advantage over the OLS method. 
If there is a lot of extreme points, it implies that 
more QR lines must be estimated to reduce the 

overall error (Koenker & Hallock 2001, Koenker 
2013). In such cases, more effort, time and 
computer analyses are involved, which could 
be considered as disadvantages. However, once 
the parameters were estimated and corrected, 
the prediction error was significantly reduced, 
regardless if the relationship was linear (Table 
3) or non-linear (Table 4).
 Various authors have explored different 
indicators to ascertain the goodness of fit for 
QR. For example, Van Keilegom et al. (2008) 
suggested tests based on empirical distribution 
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of the residuals, while Fan et al. (2002) and 
Fan and Jiang (2007) proposed tests based on 
the verisimilitude function. In our study, we 
presented the MAE and the RMSE values which 
had intuitive interpretation. We also presented 
the AIC which measured the relative quality of 
the adjustment of each quantile regression. AIC 
allows measuring the difference between the 
projection of the model and the reality based on 
the theoretical criterion of minimum information 
(Akaike 1974). We are not only contrasting the 
results given by QR and least squares models, but 
also evaluating the behaviour of each QR model 
generated for each τth quantile (Tables 3 and 
4). For instance, in reference to total biomass, 
AIC values fluctuated between -13.649 and 3.782 
units, with a range of only 17.43 units between 
the highest and lowest values, suggesting a 
moderate and relatively similar goodness of fit of 
the models in each tested quantile. This finding 
is consistent with the other adjustment indicators 
(Table 3). Thus, the AIC values are useful and 
very practical to make a decision on generating 
more regression lines or not.
 The lines modelled for different quantiles 
were not always parallel to each other (Figures 
2a and b). This seems to respond to an irregular 
variance of the conditional distribution causing 
heteroscedasticity. The lines were equidistant 
if the distribution was uniform no matter if 
variability was high or low (see the quantile lines 
near the median of the Figures 2a–d). For a very 
irregular variance, a possible alternative would 
be to increase the number of samples to see if 
the data maintain the same distribution pattern 
(Ford 2015). Unfortunately, in this study, it was 
not possible to increase the sample size anymore 
because the owners of the forest nursery would 
not authorise further destructive analysis due to 
the difficulty of collecting seeds of the species 
studied. Therefore, the portion of the data in 
which the given quantile line is able to predict the 
variable of interest must be effectively delimited 
(Nava-Nava & Antúnez 2018).
 Another novelty of this approach was that the 
estimated coefficients for each model showed 
changing trends between different quantiles. 
In some cases, there was a direct relationship, 
while in other cases, an inverse relationship (e.g. 
Figures 1a and b). This indicates that the variable 
of interest can respond positively (increasing its 
value) as the value of regressor increases, but 
another variable integrated in the model can 

have an opposite impact in some segments of 
the conditional distribution (Figures 2a–d). The 
latter is extremely important for an effective 
understanding of the relationship between the 
variables analysed. 
 That is probably the most valuable contribution 
of the QR method under the approach presented 
in this paper, since it attempts to describe the 
fluctuating nature of the biological modelled 
data. Also, the type of relationship (decreasing 
or increasing) and magnitude (reflected in the 
parameters) can help to identify the conditions 
under which an explanatory variable contributes 
significantly to the goodness of fit of a model 
(Koenker & Hallock 2001). For instance, for 
predicting the number of leaves, the DFL 
coefficients found were positively related (Figure 
1b). This suggests a stronger relationship in 
higher than in lower quantiles (Cade & Noon 
2003). In this way, the graphic result of QR shows 
the impact of a given regressor at a specific point 
or segment in the distribution of a variable of 
interest. In contrast, OLS and NLS did not clearly 
describe the impact of the predictor in those 
particular sectors of the distribution, since both 
drew a single line based on the mean (Figures 1a 
and b).
 In general, regardless of the widely dispersed 
data, the differentiated QR prediction models 
constructed for different quantiles yielded 
substantial reduction in the error magnitude and 
the leverage effect of outliers, in comparison with 
the OLS method (Tables 3 and 4). Hence, QR 
could be one important tool to be considered in 
order to better explain the variables of interest in 
forestry, where the data are highly fluctuating and 
where it is often necessary to use the least possible 
number of predictors to reduce costs. QR can 
certainly be very useful as a complementary tool 
to the conventional OLS model. Although the 
effect of autocorrelation or multicollinearity is 
difficult to avoid when several attributes of living 
beings are simultaneously modelled, such effect 
may be reduced by including as few predictors as 
possible. Sometimes it becomes a challenge for 
the forest modeller to use information from the 
same individuals as regressors (diameter, height, 
crown height, diameter at the base or any other 
attribute of the same plant), which correlate 
with each other either in minor or greater 
scale, violating one of the criteria of standard 
regression models, which is the independence 
of regressors. 
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 Finally, even though a significant difference 
was found between the average MAEs of the 
contrasted methods, results reported here are 
susceptible to improvement and could even 
be complemented with other analyses, such as 
the regression of the median (Ying et al. 1995, 
Koenker & Hallock 2001), non-parametric 
multiplicative regression (McCune 2006), and 
smoothing model, e.g. using penalised splines 
(Takeuchi et al. 2006). Likewise, a Bayesian 
approach to QR can improve modelling efficiency 
by using the asymmetric Laplace distribution to 
perform the likelihood function in a generalised 
linear model context (Yu & Moyeed 2001, 
Lancaster & Jun 2010, Feng et al. 2015).
 The main advantage of the approach presented 
here is that it provides a greater interpretability of 
different sectors of the conditional distribution, 
especially for points away from the mean and 
median, revealing patterns of behaviour in a 
more detailed way. In addition, it also describes 
the influence of the independent variable on the 
range of the dependent variable and the shape of 
the conditional distribution (Wang & Jv 2021). It 
is also possible to capture the tail characteristics 
of the distribution.
 The QR technique is gradually being used as 
an integral method of analysis in both linear and 
non-linear models (Yu & Moyeed 2001). Taking 
into consideration some drawbacks of the OLS 
technique, such as the greater investment of 
time (especially, if there are several predictors), 
we suggest using QR as a complementary tool to 
evaluate more accurately the relationship between 
variables and to predict the variables of high 
interest in forestry, plant ecology or related areas.
 In particular, it is appropriate to use QR 
if the distribution of data is asymmetric, or if 
there is a high presence of outliers producing 
bias due to their leverage effect, or if the 
residuals do not follow a normal distribution. 
Using QR to generate constants for specific 
segments of the data, the reduction of bias is 
evident, regardless of whether there is a linear 
or curvilinear relationship. Therefore, QR gives 
more specific information about the properties of 
the relationship between each variable of interest 
and its respective predictors. 
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