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INTRODUCTION

Eucalyptus citriodora (Myrtaceae), commonly 
called lemon-scented eucalyptus, is a fast-growing 
ornamental tree species planted for timber and 
oil production. The essential oil extracted from 
its leaves is used in food, pharmaceutical, daily-
use chemical and fragrance products (Tripathi 
et al. 2008, Bello et al. 2013). The oil has been 
used for sterilisation, as an insect repellent 
(Singh et al. 2011), and for its anti-inflammatory 
and acaricidal activities (Clemente et al. 2010, 
Gbenou et al. 2012). The main components of 
E. citriodora oil are citronellal, neoisopulegol, 
isopulegol, citronellol, citronellyl acetate, and 
β-caryophyllene (Zini et al. 2001, de Araujo-
Filho et al. 2018).
 Essential oil yields of 2.3 to 5.9% have been 
reported from dried leaves, depending on the 
growing location (Moudachirou et al. 1999).  
Productivity is influenced by genetic factors 
(Doran & Matheson 1994) and other factors such 
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as ontogeny and age of leaf and environmental 
effects (Nishimura et al. 1984, Jesús et al. 
2010, Brilli et al. 2013). Further, the chemical 
composition of essential oil has been shown to vary 
with harvesting time (Moudachirou et al. 1999, 
Tolba et al. 2015). Leaf essential oil content is 
higher during the wet season (April to September) 
in subtropical north India (Manika et al. 2012), 
and higher in leaves from older trees and in 
leaves collected in autumn than in summer (de 
Andrade & Gomes 2000). Silvicultural practices 
such as pruning also influence leaf and essential 
oil productivity in E. citriodora (Wirthensohn & 
Sedgley 1998). Pollarded trees in general produce 
more leaves than coppiced trees (Muralidharan 
& Mascarenhas 1995) but for E. citriodora in 
Dehradun, northern India, essential oil yields 
were slightly better for coppiced rather than  
pollarded trees on a 6-month or 1-year harvest 
cycle (Shiva et al. 1988). 
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 The influence of pollarding height, tree and 
foliage age on the composition and yield of  
E. citriodora essential oil are not well understood. 
In this study, leaf biomass, essential oil yield 
and composition were measured in relation 
to tree age, different pruning treatments and 
foliage age following pollarding, with the aim 
of identifying silvicultural practices supporting 
optimal production of this essential oil.  

MATERIALS AND METHODS

Study location

The study sites are located in north-east Wuming, 
Nanning, Guangxi Zhuang Autonomous Region 
(22°59'–23°33' N, 107°49'–108°37' E). The 
climate in this region is subtropical monsoon with 
a dry season from September to April accounting 
for an average of 473 mm of precipitation, 
and rainy season from May to August with  
767 mm of precipitation, adding up to an average 
annual total of 1240 mm. The average annual 
temperature ranges from 20 to 22 °C (National 
Meterological Center). 

Essential oil extraction and analysis

For all experiments, the leaves were harvested 
in November (winter), when oil yield peaks for 
E. citriodora in subtropical China (Miguel et al. 
2005). About 500 g of fresh leaves were collected 
from 50 E. citriodora trees chosen randomly from 
a 25-year-old pure species stand (planted in 1992) 
at the study location. Tree spacing was 2 m × 3 
m. The leaves were cut into 2–3 cm pieces, added 
to 800 mL water in a 2–L round-bottom flask 
and subjected to steam distillation for 1 hour 
using a conventional steam distillation apparatus 
to extract the essential oil (following Tolba 
et al. 2015). E. citriodora oil on the top of the 
condensed water was collected, dried overnight 
in a desiccator and stored at 5 °C. Quantitative 
and qualitative analysis of E. citriodora oil was 
carried using a gas chromatograph attached 
to a mass spectrometer (Wang et al. 2014) to 
determine the main components and their 
contents. The essential oil content of dried leaves 
(%) was then calculated as follows:

 × 100Fresh leaf oil weight 

(1 –  fresh leaf water content) 
Essential oil yield of dried leaves (%) =    

Qualitative analysis conditions of GC-MS

The column was a ZB-5 si l ica capil lar y 
column (30 m × 0.25 mm, 0.25 μm) coupled 
with a mass selective detector. The column 
temperature was initially held at 70 °C for  
5 min and was programmed to rise from 70 to 
80 °C at 2 °C min-1, 80 to 85 °C at 1 °C min-1,  
85 to 120 °C at 5 °C min-1, and 120 to 220 °C 
at 10 °C min-1. Maximum temperature was 
maintained for a further 3 min before cooling. 
The injector and detector temperatures were  
250  °C. The carrier gas was high purity He flowing at  
1.0 mL min-1. For GC–MS the detection and 
electron impact system was used with an 
ionisation energy of 70 eV and a scan range from  
45–350 amu. The sample size (1% ethanol 
solution) was 0.5 μL with a splitting ratio of 100:1. 

Quantitative analysis conditions of GC

GC analyses of essential oil samples were 
performed on an gas chromatograph fitted with 
a flame ionisation detector, using a ZB-WAX silica 
capillary column (60 m × 0.25 mm, 0.25 μm). The 
column temperature was raised linearly from 70 to  
220 °C at a rate of 2 °C min-1. The carrier gas 
was N2 flowing at 1.0 mL min-1. The injector 
and detector temperatures were 200 and 250 °C 
respectively. The sample size was 0.5 μL with a 
splitting ratio of 100:1. 

Quantifying essential oils from trees of 
different ages

Fresh leaves were harvested from each of 20 E. 
citriodora trees that were 1, 3, 5, 10, 15, 20 and  
25 years old (i.e. the stand was planted in a 5-year 
succession from 1992–2012, and in 2014 and 
2016). Plant spacing was 2 m × 3 m in this pure 
species stand. Essential oils were extracted from 
the leaves using the procedure described earlier, 
then determined and quantified by GC.

Quantifying essential oils from coppiced and 
pollarded trees 

The trees evaluated in this study were 15 years old 
and were planted in 2002 as a pure-species stand 
(20 rows of 20 trees in 1.5 m × 1.5 m spacing). 
Fifty trees were randomly selected for each of five 
pruning treatments: coppicing (at ground level), 
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and pollarding tree stems at heights of 0.5, 1, 2 
and 3 m. One year later, fresh leaves were clipped 
off the regrowth and the trees pruned to the 
prescribed coppice or pollarding treatment for 
subsequent studies (not covered in this paper). 
The essential oils were extracted from the leaves 
using the procedure described earlier, then 
determined and quantified by GC. 

Quantifying essential oil production over 
time, after pollarding

The trees evaluated in this study were 15 years old 
and were planted in 2002 as a pure-species stand 
(20 rows of 20 trees in 1.5 m × 1.5 m spacing). 
All 400 trees were pollarded to 1 m height. Fresh 
leaves were collected from a random sample of 
50 trees after 6 months and on year 1, 2, 3, 4 and 
5 after that one-time pollarding. The essential 
oils were extracted from the leaves using the 
procedure described earlier, then determined 
and quantified by GC.

Statistical analysis

Statistical analyses were carried out using SPSS 
19.0 software. Comparisons were made using 
t-test. The significan thresholds were 0.05 (marked 
by *) and 0.01 (**). Results are given as mean  
(± standard deviation). 

RESULTS AND DISCUSSION

Composition of E. citriodora essential oil

Twenty-one compounds were identified, which 
represented 97.2% of total compounds in 
the essential oil of E. citriodora. The dominant 
compounds included citronellal (76.9%), 
citronellol (7.5%), isopulegol (6.4%) and 
neoisopulegol (3.1%), which comprised 93.9% 
of oil yield (Table 1). The contents of citronellyl 
acetate (1.1%) and p-menthane-3,8-diol (1.0%) 
made up 2.1% while the rest of the compounds 

Table 1  Quantification of the compounds detected in Eucalyptus citriodora essential oil

No. Retention time 
(min)

Compound Formula Similarity  
(‰)

Molecular weight Relative content 
(%)

1 6.78 β-Pinene C10H16 892 136 0.11

2 7.17 β-Myrcene C10H16 821 136 0.06

3 8.88 Limonene C10H16 852 136 0.02

 4 8.89 D-Limonene C10H16 841 136 0.01

5 9.01 1,8-Cineole C10H18O 860 154 0.09

6 9.18 trans-β-Ocimene C10H16 852 136 0.13

7 15.66 Isopulegol C10H18O 934 154 6.37

8 16.13 Citronellal C10H18O 889 154 76.87

9 16.31 Neoisopulegol C10H18O 930 154 3.09

10 19.84 Citronellol C10H18O 807 154 7.46

11 23.70 p-menthane-3,8-diol C10H20O2 870 172 1.03

12 23.96 Citronellyl acetate C10H22O2 882 198 1.11

13 24.92 2-Methylbenzyl acetate C10H12O2 782 164 0.15

14 25.46 Caryophyllene C15H24 927 204 0.50

15 26.14 Humulene C15H24 859 204 0.03

16 26.58 β-copaene C15H24 748 204 0.04

17 26.83 γ-Elemene C15H24 810 204 0.05

18 28.08 Spathulenol C15H24O 780 220 0.02

19 28.16 Caryophylene oxide C15H24O 799 220 0.03

20 28.22 Globulol C15H26O 759 222 0.02

21 31.40 Phthalic acid, diisobutyl 
ester

C16H20O4 836 276 0.02
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(each <1%) comprised the remainder (Table 
1). The four dominant compounds identified 
and used as indicators of oil quality in our study 
were the same ones reported as major E. citriodora 
essential oil compounds previously (Singh et al. 
2011).

Essential oil yield in relation to tree age

Essential oil yield was highest from the 3- and 
5-year-old trees (4.4 and 4.7% respectively), 
which were not significantly different in yield, 
and thereafter negatively correlated with tree 
age for the 10- to 25-year-old trees in this study 
(Figure 1). It was noted that oil yield from the 
15-year-old trees was sharply lower than all other 
tree ages including the 20- and 25-year-old trees 
and this could be due to variation in planting 
stock or growth conditions for these succession 
plantings over the 25 year period. 
 The most important compound citronellal was 
highest from the 3- and 5-year-old trees (82.6 and 
82.5% respectively), which were not significantly 
different (Figure 1b). Citronellal yield decreased 
with tree age––the 25-year-old-trees had a yield 
of 55.5%. On the other hand, citronellol yield  
increased with tree age––the 3- and 25-year-old 
trees had yields of 4.3 and 12.5% respectively 
(Figure 1d). Based on our results, 3- to 5-year-old 

trees appeared to be an optimal age range for 
harvesting high quality oil. 

Essential oil yield in relation to pruning 
height

One year following the pruning treatments, 
foliage biomass was three times greater from 
1, 2 and 3 m high stumps, than from coppiced 
trees and 0.5 m high stumps (Figure 2). Oil yield 
was highest for trees pollarded at 1 m, although 
not significantly different from trees pollarded 
at 0.5, 2 and 3 m. Oil yield was lowest from 
coppiced trees (3.2%). Oil yield from the fresh 
leaves of trees pollarded at 1 m was 5.9% which 
was similar to that obtained from E. citriodora in 
Benin (Moudachirou et al. 1999) and Congo-
Brazzaville (Loumouamou et al. 2009). All 
pollarding treatments yielded high quantities 
of citronellal (77.7–81.9%), significantly greater 
than yield from coppiced trees (66.0%). The 
low foliage biomass from coppiced E. citriodora 
found in our study is in contrast with a previous 
study indicating that pollarded trees gave slightly 
less oil yields than coppiced trees (Shiva et 
al. 1988). While coppiced stems initially grew 
faster than uncut or seedling trees (Blake 1980) 
and produced more biomass in the first year of 
growth (Harrington & Fownes 1995), several 

Figure 1  Mean percentage yield (± standard deviation, n = 20) of (a) Eucalyptus citriodora essential oil, and 
its major compounds: (b) citronellal, (c) neoisopulegol and isopulegol, and (d) citronellol from 
trees of different ages; * = p < 0.05, ** = p < 0.01 (t-test)
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authors have reported decreased stand volume, 
stump loss and sprout mortality that reduced 
productivity in coppiced eucalypt trees (Whittock 
et al. 2003, Zhou et al. 2017).

Essential oil yield up to 5 years after pollarding

For this field trial where all the trees were 
pollarded at 1 m, oil yield was significantly higher 
when harvested at 12 months (5.9%)––almost 
double that of the other harvest times (Figure 
3a). Citronellal content was also highest at  
12 months after pollarding (77.7%) while the 
other harvest times yielded citronellal in the 
range of 66.4–75.0% (Figure 3b). Citronellol 
content was highest in the fourth year after 
pollarding (16.6%), but the content at 12 months 
(10.0%) was still good. Our results partially 
concurred with the report by Shiva et al. (1988) 
that essential oil and citronellal yield was best 12 
months after pruning but differred from Shiva 
et al. (1988) in that yield was significantly less at 
6 months.  Our results indicated that oil should 
be harvested while foliage was young (12 months) 
as essential oil content appeared to decrease 
with age. 

CONCLUSIONS

The major components of E. citriodora essential 
oil were citronellal, citronellol, isopulegol and 
neoisopulegol, and their contents and oil yield 
changed with tree age, coppicing or pollarding 
height, and foliage age after pollarding. Essential 
oil yield and citronellal content appeared to be 
highest in 3- and 5-year-old trees, was higher in 
pollarded trees (stump heights 0.5–3.0 m) than 
in coppiced trees, and was best in year-old foliage 
of pollarded trees. Based on our results, for 
optimal oil yield, we recommend that harvest of 
E. citriodora leaves should begin in the 3rd to 5th 
year after planting with a 1-year harvest interval 
and pollarding above 1.0 m.
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