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WAN RAZALI MOHD. 1988. Modelling the tree growth in mixed tropical forests I. Use
of diameter and basal area increments. Tree growth can be expressed by either diame-
ter increment (dD) or basal area increment (dBA). Little work has been done to
determine which of these two parameters is the appropriate dependent variable for use
in growth models. This paper examines the growth of regenerated mixed tropical forests
in Peninsular Malaysia which were measured over a period of 13-20 y. Least squares
regression equations were developed to relate dD and dBA to initial tree diameter at
breast height (DBHOB) in 36 permanent growth plots of 0.4 ha each. The residual plots
relating dD and dBA to DBHOB show the existence of non-homogeneity of variance.
The transformations of dD and dBA to remove non-homogeneity of variance were
carried out and used to relate to DBHOB. Furnival Index was then constructed and
adjusted to compare likelihoods of different statistical models for dependent variables
that have been expressed in the same sample space. The result indicates that diameter
increment is a more appropriate dependent variable to be used in growth models in
mixed tropical forests.

Key words: Growth modelling - mixed tropical forests - index-offit - power
transformation - likelihood functions.

Introduction

The growth of individual trees may be expressed by either diameter increment
or basal area increment. If we consider two trees with the same diameter increment
but different initial diameters, then these two trees would have different basal area
increments. The above consideration poses an initial problem in deciding the
appropriate form of the dependent variable (diameter increment or basal area
increment) because it may be felt intuitively that these two variables expressed
increment (or growth) somewhat differently.

For many researchers, the decision to use diameter or basal area increment in
growth studies seems to have been decided arbitrarily. Lemmon and Schumacher
(1962), Newnham (1966), Rudra and Filmer (1970), Goulding (1972), Hegyi
(1973), Lanford and Cunia (1977) and Hahn and Leary (1979) used diameter
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increment while others, such as Opie (1968, 1972) and Moore et al. (1973) used
basal area increment in their growth studies. None of these workers gave any
reasons for preferring one parameter over the other.

On the other hand, Cole and Stage (1972) and Stage (1973) analysed radial
increment, basal area increment and the logarithms of each. They found that,
using Furnival’s (1961) index of fit criterion, the logarithm of basal area incre-
ment to be the superior form of the dependent variable. Hann (1980) decided to
use the natural logarithm of basal area and then converted that value to a diameter
growth rate. He, like Cole and Stage (1972) and Stage (1973), considered basal
area growth as nearly linear over short time periods and the residuals of the
logarithm of basal area growth more often approached normality with homoge-
neous variance as basic reasons for his choice of that variable. West (1980) found
that the precision of estimate of future diameter is the same whether diameter or
basal area increment is used. He concluded that no a priori reason exists for
expressing growth as diameter or basal area increment. Manley (1981), using
Furnival’s index of fit criterion, found diameter increment to be better as the
dependent variable.

Based on the above review, it can be seen that the question of whether to use
diameter or basal area increment in growth studies has not been settled definitely.
Such a question is even harder to answer in growth studies of mixed tropical forests
where such growth analyses have never been done. Nevertheless, I decided to ex-
amine the prediction of future diameter of individual trees from regression
relationship using both diameter and basal area increments as dependent vari-
dbles despite a lack of growth studies in mixed tropical forests

Source of data and regression methods

Data from permanent growth plots (0.4 ha each), measured over a growth
period of 13-20 yin the regenerated forests of Peninsular Malaysia (Wyatt-Smith
1963), were used in this study. The forests are dominated by the family Diptero-
carpaceae, rich in red meranti (one group of Shoreaspp.) and keruing (Dipterocar-
pusspp.). The average diameter (DBH) for Dipterocarps (DIPT) was 37.6 ¢m, and
for Non-Dipterocarps: Light Hardwood (LHW) 29.2 ¢m, Medium Hardwood
(MHW) 28.9 ¢m, and Heavy Hardwood (HHW) 24.5 ¢m. The average basal area
of trees 10 ¢m dbh and above at the time of plot establishment was 16.9 m? ha .

A total of 54 growth plots were established as early as 1962 and remeasured at
intervals of 3-9 y. For the present work, 36 plots were randomly selected and used
in the analyses. Diameter increment (dD), basal area increment (dBA) and initial
tree diameter at breast height (DBHOB) of the four species groups selected were
subjected to the regression analyses. The species groups are DIPT, LHW, MHW,
and HHW. The number of diameter measurements varied betweeh plots but
ranged between three to six. The number of observations available for each
species group is shown in Table 1. Background information of these 54 growth
plots are presented in Wan Razali (1986).
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Table 1. Species group composition, number of trees, and total number of tree measurement periods
used in growth analysis

Number* Number of tree** Number
Species of trees measurement in (3) used
group measured periods in growth
analysis
(1) (2) (3) 4)
DIPTEROCARPS: 1542 3631 2576
NON-DIPTEROCARPS:
Light Hardwood 3178 6046 4076
Medium Hardwood 3374 6065 4168
Heavy Hardwood 2746 4660 3203

*Includes trees with one measurement period.
**Excludes trees with one measurement and trees having diameter increment >3 cm/y.

For each species group, examination of graphs of dD and dBA plotted against
DBHOB suggest a nonlinear relationship. Therefore, for each species group and
using data from all increment periods of the 36 growth plots, two regression
equations were initially investigated: one equation related dD (¢m y ') to DBHOB,
and the other related dBA (¢m? y') to DBHOB.

Results and discussion
Relationship between initial tree diameter and increment

For relationships relating diameter and basal area increments to DBHOB,
examinations of residual plots (Figure 1) suggest the existence of non-homogene-
ity of variance. There is also an abrupt edge along the line y =-x which corresponds
to the negative and zero observed diameter or basal area growth. The trend of non-
homogeneity was checked across the intervals of diameter, the predictor variable
in the regression. The variance of the residuals of the fitted regression seems to be
proportional to the square of initial diameter.

In order to stabilize the non-constant variance, logarithmic transformations
were carried out on the dependent variable of diameter and basal area increments.
A problem arose with the logarithmic transformation of increment data because
of the presence of zero and negative increments. As such, all negative increments
were assumed as zero and the actual transformation used was in the form of
Ln(Y+1). Weighted least squares regressions were also carried out.

The logarithmic transformation did not appear to improve the residual distri-
bution to a large extent for both diameter increment and basal area increment
(Figure 2). Although much of the heteroscedasticity disappeared, there is still a
linear trend in residual distribution, especially in the basal area increment. The
weighted least squares relating diameter increment to DBHOB appear to deviate
slightly from the norm as judged from the residual plot, but the residual plot
relating basal area increment to DBHOB still shows a linear trend (Figure 3).
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Figure 1. Residuals from ordinary least squares regression plotted against predicted values. The
fitted regressions were as follows: dD = by + b, D + b,D? and dBA = b + b, D + b,D? where
dD =diameter increment (c¢m y ), dBA = basal area increment (¢m? y!), and D =DBHOB.
The result is shown for Dipterocarps; other species showed similar effect.
(1,2, 3,...... 9,A,B,C, ... Z denote the number of points plotted)

Index of fit

Now, the problem is to determine the most appropriate form of the dependent
variable. Furnival’s (1961) “index of fit” (FI) criterion was used for this purpose.
Furnival’s index of fit employs the concept of maximum likelihoods and has the
advantage of reflecting both the size of residuals and possible departures from
linearity, normality and homoscedasticity.

The Furnival index is expressed as

FI=[£(V)]'s

where [f(Y)]'is geometric mean of the derivative of the dependent variable with
respect to diameter increment (dD) or basal area increment (dBA) as in the case
of this study, and s is the standard error of the fitted regression.

The concept employed by Furnival (1961) is equivalent to transforming (power
transformation) the response Y as suggested by Box and Cox (1964). The
transformation of Y is equivalent to fitting the model

M =XB+e, var(e) =02,
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Figure 2. Residualsfrom logarithmic regression plotted against predicted values. Models fitted were
as follow:
Ln(dD) =b,+bD+b,D?and Ln (dBA) =b,+b,D + b2D2 where dD = diameter increment
(cm/year), dBA = basal area increment (cm? /year), and D = DBHOB. The result is shown for
Dipterocarps; other species showed similar effect.
1,2,3,....,9,A,B,C, .....,Z denote the number of points plotted)
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Figure 3. Residuals from weighted least squares regression plotted against predicted values. The
weighted regressions fitted were as follows:
dD = b, + le + b2D2 and dBA = b0 + le + b2D2 where dD = diameter increment (cm/year),
dBA = basal area increment (cm?/year), and D = DBHOB. The result is shown for Diptero-
carps: other species showed similar effect.
(1,2,3,......,9,A,B,C, ... Z denote the number of points plotted)
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where \ is the power of the transformation. If, by convention, we take A = 0 to be
the natural or log transformation, then all the usual transformations are included:
A =1 corresponds to no transformation, and A = -1 corresponds to reciprocal. Box
and Cox (1964) have suggested that an estimate of A can be obtained by finding
the joint maximum likelihood estimates of B, 0%, A and using distributional
assumptions concerning e. If one assumes that e ~ N(0,I0%), Weisberg (1980)
outlined a procedure by which a usual regression program can be used to obtain
the maximum likelihood estimates of A, B, and 2.

FI (or Box and Cox method) was constructed to compare likelihoods of
different statistical models for a single response variable. Example, to determine
whether dD or Ln(dD) or (dD/DBH?) better satisfies a linear regression model
with normally distributed error with constant variance. FI was not derived to
compare regression models for intrinsically different responses such as dD and
dBA. This is because likelihood functions of the dependent variables, required in
calculating FI, have to be expressed in the same sample space (Furnival 1961).
However, dD and dBA represent two different sample spaces, and FI for these
responses represents different units of measurement.

The Flreduces to the usual estimate of the standard error when the dependent
variable is dD or dBA asin this case. When the dependentvariable is some function
of dD or dBA, the index may be regarded as an average standard error transformed
to units of dD or dBA. Clearly, these two units are different.

To overcome this problem, the derivative of the dependent variable dBA
(f (dBA)) may be expressed with respect to its square root (/dBA). This allows both
derivatives, f (dD) and £ (dBA), to be expressed with respect to one common unit
(cmy') of the dependent variables dD and dBA (see formula, Table 2). Then,
a direct comparison of the index between the two dependent variables may be
made for descriptive purposes.

Table 2. Furnival’s Index of Fit (FI)

Species Groups

Dependent
Variable Dipterocarps Non-Dipterocarps
DIPT LHW MHW HHW

Unweighted:
Basal Area Increment (dBA) 3.563* 3.969 4.389 3.696
Logarithmic:
Ln(dD) 0.098 0.051 0.052 0.032
Ln(dBA) 2.427° 1.584 1.544 1.119
Weighted:
Diameter Increment (dD) 0.044 0.025 0.029 0.033
Basal Area Increment (dBA) 0.404¢ 0.345 0.323 0.299

Models fitted were: f(X) = b_+ b D + b,D?, where {(X) is either dD(cm y '), dBA(cn? y '), Ln(dD), or Ln(dBA),
and D is DBHOB. The best fit model for each species group is indicated by the lowest FI value.
*FI1=[2/dBA]'*s — unweighted; "FI=[2 //dBA]'*s — Logarithmic; FI=[2 dBA vD?*]1*s —
weighted by (1/D?); (The LHW, MHW, and HHW follow the same formula).
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Values of FI are given in Table 2. The index of diameter increment indicates
better fit than its logarithm and superior than the basal area increment and its
logarithm. The normally distributed residuals of diameter increment (Figure 3)
further support this conclusion. Thus, diameter increment was chosen as the most
appropriate dependent variable for subsequent analyses.

Conclusion

One of the objectives in most modelling studies is to predict the future growth
of trees resulting from normal growth or the application of some treatment. It has
been shown that, in mixed tropical forests particularly in Peninsular Malaysia, the
use of diameter increment gives better fit than its logarithm, and superior than the
basal area increment.

It means that either diameter increment or basal area increment is suitable
in examining growth effects in these forests. This would then serve as a guide to
tree growth modelers as to the most appropriate choice of dependent variable
for subsequent analysis.
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