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INTRODUCTION

The visual aesthetics of manufactured products 
influence their perceived quality. Visual aesthetics 
and perceived quality are two of the eight 
dimensions of quality (Garvin 1984, 1987). This 
holds true for manufactured wood products 
(Sinclair et al. 1993) particularly for furniture 
since wood is a premium material compared with 
plastic and metal (Nyrud & Bringslimark 2010). 
The presence of any visual defects is detrimental 
to the perceived quality of the product (Høibø 
& Nyrud 2010), reducing its economic value and 
the manufacturer’s reputation.
	 Visual surface defects that appear on a fully 
assembled wooden joinery product can be 
categorised into two major types. The first type 
(referred to as Type 1 in this paper) comprises 
defects that originate naturally from the raw 
material itself (for example, knots, blemishes, 
discolouration, pinholes, shot holes, gum and 
mineral streaks). The second type (referred to 
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as Type 2) is for manufacturing defects, which 
encompass the whole gamut of defects from all 
stages of production, including dimensional 
inaccuracies, surface checks, cutter chatter 
marks, rough surfaces, veneer knife marks, 
handling damage, glue spots and veneer 
delamination.
	 Judgement  on  the  appearance  and 
acceptability of Type 1 defects in the final 
product can be subjective because it is driven 
by cultural preferences, trends and creative 
marketing (Brinberg et al. 2007). There are 
rules governing the quality of lumber sold in 
the market, for example lumber grading rules 
by the National Hardwood Lumber Association 
USA (American Hardwood Export Council 
2017). Certain natural defects may be desired, 
e.g. knots and discolouration that may occur 
in rustic oak (Quercus spp.), red-heart beech 
(Fagus sylvatica), knotty pine (Pinus spp.), burly 
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maple (Acer spp.) and knotty red alder (Alnus 
rubra). Likewise, there are Type 2 defects that 
are intentionally introduced to simulate rustic 
or antique surfaces, e.g. distressed timber 
and cutter chatter marks may increase visual 
appeal. However, products free of both Type 1 
and 2 defects are overwhelmingly preferred, as 
detailed in Sections A-7 and F-6 of the Industry 
Standard for Interior Architectural Wood Stile 
and Rail Doors (Window & Door Manufacturers 
Association 2013).
	 Detection of Type 1 defects is typically done 
in upstream sawmilling processes, traditionally 
by expert human graders. Studies have been 
conducted on human fallibility during manual 
grading and marking processes with yield 
reduction from 63.5 to 47.4% (Buehlmann 
& Thomas 2002, 2007). Today, some large, 
modern sawmills deploy commercially available 
automated grading systems that reduce human 
error.
	 Type 2 defects are typically detected either 
inline or at the end of the manufacturing line 
prior to packaging and shipment. Detection 
is almost always done manually, especially in 
Malaysian mills. Some of these defects only 
become apparent when the assembled products 
are stained and finished. This is particularly 
problematic when mid to dark tones of pigment 
stains are used, as the pigments will accentuate 
these undesirable defects on top of accentuating 
the natural wood grain (Cary 2014). Reworking 
these surfaces after staining is impractical as the 
thin slices of wood veneers (ranging between 0.3–
0.6 mm) are glued onto composite, reconstituted 
or non-wood substrates.
	 There is a dearth of scientific studies 
looking into the prevalence of Type 2 defects 
in the downstream industry. The aim of this 
paper is to (1) determine from industrial data 
the prevalence of such defects in assembled 
wooden veneered interior joinery doors, and 
(2) to study the relationship between human 
ocular physiology and the detectability of 
such defects. The species selected for this 
study were red oak (Quercus spp., hereafter 
‘red oak’) ,  yel low poplar (Lir iodendron 
tulipifera, hereafter ‘poplar’) and maple (Acer 
spp., hereafter ‘maple’), which are among 
the most popular hardwood species in the 
US market (Nicholls & Roos 2006, Espinoza 
et al. 2011).

MATERIALS AND METHODS

Industrial reject data

Data and images were obtained from January 
2012 to December 2017 (72 months), courtesy 
of TS Chye Enterprise, a local quality inspection 
service provider. The data were sampling data 
for interior joinery doors cladded with US-grown 
red oak, poplar and maple veneers, collected by a  
third party inspection contractor commissioned 
by customers to assess the quality of the products 
prior to shipment. The data included sampled 
quantities, defect types and quantities, as well as 
defect images, representing 8.94% of Malaysia’s 
total national exports to the US (Table 1). The 
88,069 doors inspected were sampled randomly 
(average sampling rate = 13.9% of volume 
shipped), with the assumptions that selection was 
random and unbiased, and that defects occurred 
independent of door model and size. Veneers 
were sliced using transverse slicers.
	 The raw defect data contained 51 different 
defects encountered during inspection of the 
sampled doors. These defects were clustered 
into seven different defect classes based on the 
nature and origin of the defects as shown in Table 
2, allowing for easy identification of their root 
causes. Pareto analysis was used to determine 
factors that had the highest occurrence. Separate 
Pareto charts were then generated for each 
species of interest (red oak, poplar and maple) 
to see if the defect frequency differed species. 
Also, Pareto charts were plotted to refine the top 
two defect classes to identify the most frequently 
occurring defects.

Behavioural study on defect detection

Since defect detection is performed manually 
in current production processes, it is useful 
to understand how difficult these defects are 
for humans to detect. A total of 78 volunteer 
assessors participated in this test, 57 of whom 
were students (non-experts) and 21 were quality 
assurance (QA) personnel from a Malaysian 
door manufacturing facility (experts). The 
students were collecting data as part of their 
coursework experiments while the QA personnel 
were instructed by their superiors to undergo 
assessment as an exercise to gauge their detection 
ability. Methods and tools are described below. 
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Table 1	 Sampled data compared with total exports from Malaysia to the United States of America*, as well 
as number of scratch and knife mark cases

 

Detail Year Total

2012 2013 2014 2015 2016 2017

Total US import from Malaysia 
(units)

156,630 210,980 173,284 174.631 133,945 136,091 985,561

Quantity sampled (units)
(% of total US import)

13,240
(8.45)

13,939
(6.61)

16,725
(9.65)

16,772
(9.65)

14,453
(10.79)

12,940
(9.51)

88,069
(8.94)

Prevalence of defects (no. of cases) (% of quantity sampled)

    Scratch cases 211
(1.59)

141
(1.01)

151
(0.90)

223
(1.33)

226
(1.56)

450
(3.48)

1402 (1.59)

  Red oak 119 92 74 97 59 139 580 (1.38)

  Poplar 73 37 70 113 150 294 737 (1.83)

  Maple 19 12 7 13 17 17 85 (1.50)

    Knife mark cases 92
(0.69)

126
(0.90(

117
(0.70)

86
(0.51)

102
(0.71)

149
(1.15)

672 (0.76)

  Red oak 33 46 28 32 28 14 181 (0.43)

  Poplar 45 72 69 45 57 130 418 (1.04)

  Maple 14 8 20 9 17 5 73 (1.29)

Table 2	 Classification of defects; technical terminology available in the glossary of the Industry Standard 
for Interior Architectural Wood Stile and Rail Doors* 

Class no. Class description Types of defects

1 Handling, sanding and 
veneer surface related 
defects

Scratches and dents, knife marks, veneer tears/cracks/checks, uneven/
over-sanded veneer, orbital sander marks, veneer edge tears, timber 
chip-offs/cracks, cross sanding marks

2 Lamination related defects Lamination glue, superglue, veneer edge delamination, veneer bubble 
delamination, debris under veneer, putty/filler material, veneer tape 
trace, veneer splice/joint gap, veneer short of edge, veneer overhang, 
veneer overlap, compression marks

3 Machining and construction 
related defects

Profile shoulder not straight, rough machining surface, edge strip 
out of spec, sharp edges, panel to profile gap, kink on profile, edge 
strip gaps at ends, rounded edge/corner, chatter marks, bowed stile, 
slanted/uneven panel profile

4 Assembly related defects Joint gaps, clipped/creased panel veneer, door not square, loose 
panels, foam left on door, misaligned mullions

5 Type 1 defects - raw material 
related defects

Pinhole, blemish/dark colour/mineral streak/iron stains, flaky veneer, 
knots, transparent veneer, white/discoloured stripe

6 Repair related defects Water stains, bad repair

7 Others (dirt, packing and 
pest related defects)

Dirt/ink stains, loose bifold spacer/protruding nails, nail on panel, 
hinge problem, carton press mark, borer/weevil infestation

*United States Department of Agriculture 2017

*Window & Door Manufacturers Association 2013
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	 Images were scaled down for portability to 
1024  768 pixels using free Windows apps: 
‘Resize Your Image’ and ‘Photo Réducteur’ 
apps. Table 3 shows the breakdown by species 
and defect of the 89 different defect images (37 
knife marks and 52 scratches) and 18 defect-free 
images. Only images of scratches and knife marks 
were selected as they were the top two defects 
found in our preliminary industrial reject data 
analysis. An example of a defect image and its 
mask tracing the defect location is shown in 
Figure 2.

Data collection

A VBA module in Microsoft Excel was developed 
to provide an easy-to-use assessment interface. 
Assessors were first tested for any ocular 
impairments using an on-screen Snellen eye 
chart for visual acuity, Ishihara colour charts 
(Ishihara 1972) for detecting colour blindness, 
and the Spaeth/Richman Contrast Sensitivity Test 
(SPARCS) (Richman et al. 2015) for assessing 
contrast acuity. The Snellen test was conducted 
with vision correction (spectacles or contact 
lenses worn) to reduce bias in results caused by 
poor visual acuity. The SPARCS test was chosen 
over the Pelli Robson chart (Pelli et al. 1988)

Table 3	 Regression results between SPARCS scores and knife mark, scratch hit rates,  false positives, low- and 
high-contrast defects using maximum Weber contrast values; also shown here are the number of 
missed defects

Defect type Species No. of 
unique 
images

SPARCS score regression results Instances 
images were 

shown

No. of misses 
(%)df r2 p-value 

(α = 0.05) 
Knife mark Overall

Red oak
Maple
Poplar

37
6
8

23

77 0.11 0.003 1170
390
390
390

296 (25.3)
145 (37.2)
83 (21.3)
68 (17.4)

Scratch Overall
Red oak
Maple
Poplar

52
15
11
26

77 0.03 0.147 1170
390
390
390

44 (3.8)
14 (3.6)
17 (4.4)
13 (3.3)

No defect (false 
positives)

Overall
Red oak
Maple
Poplar

18
6
5
7

77 0.03 0.130 1170
390
390
390

182 (15.6)
93 (23.8)

103 (26.4)
76 (19.5)

Low contrast Overall
Red oak
Maple
Poplar

63
10
14
39

77 0.13 0.001 1938
627
619
692

322 (16.6)
152 (24.2)
94 (15.2)
76 (11.0)

High contrast Overall
Red oak
Maple
Poplar

26
11
5

10

77 0.01 0.320 402
153
161
88

18 (4.5)
7 (4.6)
6 (3.7)
5 (5.7)

df = degrees of freedom, r2 = coefficient of determination

Software was developed in both Visual Basic 
for Applications (VBA) in Microsoft Excel, and 
Visual Basic in Visual Studio 2017.

Defect images used for assessment

The images used for analysis were archival data 
taken in an industrial setting. The inspection 
setup is depicted in Figure 1. The 5 MP (2592  
1944 pixels) images were taken using a Sony DSC-
TX30 digital camera in 24-bit colour depth sRGB 
colour space, set on full auto mode without flash. 
Files were saved in JPEG format at the default 
quality setting.

Figure 1	 Inspection lighting setup; table surface 
consists of padded rollers

2  Nikkon floodlights 
150 W halogen bulbs 
220–240 V, 50 Hz Angled 
45° down
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because it is better suited as a test performed on 
the computer screen (Faria et al. 2015). Mean 
SPARCS scores (±  standard deviations) were 
calculated for each assessor.
	 Assessors were presented sequentially with 45 
different images––5 images per veneer species 
were randomly selected from each of these 
three defect categories: knife marks, scratches, 
no defect (Table 3). The assessors were asked to 
mark the location of the defect by enclosing it 
with a box selection using a mouse, or to mark 
the images as not having any defects. The time 
taken for the assessor’s selection to be committed 
was recorded for each image. 

Data processing

The assessors’ selection for each defect image 
was compared with its corresponding mask file 
image and the number of pixels were determined 
for (1) defects in the mask file images, (2) the 
corresponding selection boxes, and (3) defects 
within that specific selection box. Defect hit rate 
scores were calculated using a six-bin scale (0 to 
5) as follows:
	

	 		  (1)

where, H = hit rate (%), nx = number of marked 
defect pixels inside user selection area and N = 
total number of marked defect pixels in image.
	 Defects on the image were then numerically 
qualified and quantified utilising the luminance 
(Y) component from the YCbCr colour space of the 
image using JPEG conversion (Hamilton 1992). 
Defect contrast was obtained by first expanding 
the marked defect region to encompass adequate 
background intensity surrounding the defect. 
Subsequently, consecutive slices of the image 
were stacked, and the average intensity of each 
stack was calculated to smooth out noise and 
enhance the defect signal. Different sizes of 

stacks were evaluated, and the quanta comprising 
64 slices per stack yielded the best results. The 
maximum and minimum values of each stack 
were recorded, as well as the defect signal level 
(higher or lower than background intensity). 
This stack average was mathematically expressed 
as follows: 

 
	 			 
		

		  (2)
	

where Aj = average intensity matrix for stack 
number j, Ii,1, Ii,2, …, Ii,n = intensities at slice 
number i for indices 1, 2, …, n and n = maximum 
size of slice array in the stack.
	 Eccentricity was determined by calculating the 
centroid of the marked defect in each image as 
follows:

	

	 	(3)

where,  = coordinates of the centroid, (xi, yi)  
=  coordinates of defect pixel, (x0, y0) = centre of 
the image (511, 383) and n = number of marked 
defect pixels in image.
	 Weber contrasts for each stack were then 
calculated (Arend et al. 2015) as shown in 
equation (4), where a positive value means that 
the defect signal is brighter than the background 
intensity, while a negative value denotes the 
opposite. Two assumptions were made: (1) the 
visual arc between the signal and the background 

Figure 2     Example of a (a) defect image, and (b) its corresponding traced 'mask' outline

(a) (b)



Journal of Tropical Forest Science 31(4): 384–397 (2019)	 Tan CO & Ng SC

389© Forest Research Institute Malaysia

was sufficiently small (less than 5 pixels) that it was 
assumed that the defect signal was adjacent to the 
background region, and (2) the background area 
was sufficiently large and intensity sufficiently 
uniform compared with the defect signal area 
(average of defect and background intensities 
was close to the average of background intensities 
alone).

	                                            (4)	

where, Iw = Weber contrast, Is = signal intensity, 
IB = background intensity.
	 Maximum Weber contrast values were 
obtained for each of the defect images by taking 
the lowest negative or the highest positive 
contrast values. If an image had two or more 
defect regions with both positive and negative 
values, these regions were assessed separately 
(having same hit rate, but two different maximum 
Weber contrast values).

Statistical analyses

Statistical analyses were performed with Microsoft 
Excel 365 Analysis ToolPak. Regression analysis 
was used to test the correlation between SPARCS 
scores with knife mark and scratch hit rates. The 
Student’s t-test (at 5% significance level) was used 
to compare scores between experts and non-
experts, and gender. The relationship between 
hit rates, and both defect size and distance 
from centre of image were investigated. Since 
the SPARCS test was designed as a predictor of 
the onset of glaucoma (Richman et al. 2015), it 
was expected to be a good predictor of defect 
detection ability.
	 The average times for each sequence were 
plotted to identify the assessor’s adjustment 
time. The Student t-test (at 5% significance level) 
was used to compare the time data after this 
adjustment period for the various defects. 

RESULTS AND DISCUSSION

Industrial defect data

An overwhelming proportion of defects detected 
were from classes 1 and 2, regardless of species 
analysed (finite population correction factor 
= 0.911, Figure 3). Scratches/dents and knife 
marks were the two most common defects found 

throughout the six-year assessment period 
(Figure 4). Knife marks and scratches were major 
contributors to the total number of defects for all 
the veneered species (Figure 5). Taken together, 
occurrences of scratches and knife marks totalled 
about 2.35% of all doors sampled, with poplar 
and maple contributing the highest percentage 
of scratch (1.83%) and knife mark occurrences 
(1.29%) respectively (Table 1).

Behavioural study on defect detection

Vision assessment

Assessors were found to have good visual acuity 
(with vision correction aids). Of the 78 assessors, 
3 were colour blind (CB)––1 had deuteranopia 
and 2 had protanopia––while remaining 75 
assessors had normal colour vision (NC). 
Anecdotally, colour blindness did not appear 
to have impaired detection performance. CB 
assessors recorded SPARCS scores (83.3 ±  8.2) 
that were similar to that of assessors with NC 
(83.3 ± 8.1), but recorded slightly higher knife 
mark (72.4 ± 8.7) and scratch scores (91.6 ± 1.5) 
than assessors with NC 62.7 ± 22.3 and 89.6 ± 
10.3 respectively). However, sample size of CB 
assessors was too small to be conclusive.
	 Results for Snellen and SPARCS scores are 
shown in Figure 6. SPARCS score is assumed to be 
normally distributed with its skewness (τ = -0.594, 
standard error, σ = 0.272) and kurtosis (κ = -0.068, 
σ = 0.272) levels evaluated using the D’Agostino-
Pearson Omnibus test for normal distribution 
(p-value 0.092 > α value 0.05) (D’Agostino et al. 
1990).
	 The average time taken for each image 
sequence is plotted in Figure 7. Results suggested a 
steep learning curve, followed by a gradual easing 
off at around the 10th sequence. Therefore, time 
values from the 10th image sequence onwards 
were used for analysis.

Defect detection performance

Table 3 shows that, despite a low coefficient of 
determination (r2) value, there appeared to be 
a statistically significant correlation between the 
SPARCS score and the ability to detect knife 
marks. SPARCS score also correlated with the 
number of images assessors missed, r(77) = 0.11, 
p = 0.003. There was, however, no correlation 
between SPARCS results and the ability to 
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detect scratches. Knife marks defects were the 
most frequently overlooked defect for all three 
veneered species (25.3%), especially on red oak 
(37.2% of instances shown).
	 Misidentified defects, particularly on maple 
surfaces (Figure 8), were mostly naturally-
occurring sugar traces and figures, e.g. rays, 
stripes, burls, curls, bird’s-eye. Red oak false 
positives (Figure 9a) were predominantly 

mischaracterisation of medullary rays and figures, 
as well as artefacts caused by light reflecting off 
the veneer surface. There were minor cases 
where small sound knots were selected. As for 
poplar (Figure 9b), the majority of the false 
positives were off-focus regions of the image that 
appeared to exhibit characteristics of a defect.
	 There were limitations in human assessment 
of defects from a single screen image alone, 

Figure 3     Pareto charts showing (a) overall defect clusters and that of (b) red oak, (c) poplar and (d) maple

Figure 4     Pareto charts for (a) Type 1 and (b) Type 2 defects
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Figure 5	 Breakdown of types of defects in data, focusing on scratches and knife marks for (a) all three 
veneered species, (b) red oak, (c) poplar and (d) maple

Figure 6	 Histograms showing assessors’ (a) Snellen scores and (b) SPARCS score distribution (n = 78, M = 
87.4, SD = 8.2)

Figure 7	 Plots showing average time taken per image for each sequence of images, its trendline, and the 
confidence interval of each plot (α = 0.05)
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with factors such as lighting angle and reflection 
playing a large role in affecting the image quality. 
In a standard industrial setting, upon initial 
detection, tactile/sensory and multi-angled visual 
verification can be used by workers to further 
assess if these are indeed defects that warrant 
rectification.

Effects of defect intensity and eccentricity

According to the plot in Figure 10, all knife marks 
had contrast values (IW) between -0.1 to 0.1, 
equivalent to their contrast ratio being between 
0.9 and 1.1 (0.9 ≤ IS : IB ≤ 1.1). Scratches, on the 
other hand, exhibited a wide range of contrast 

Figure 8	 The two defect-free maple images that equally garnered the highest number of false positives (n = 
78, no. of misses = 29, miss rate = 37.2%)

Figure 9	 Images of defect-free (a) red oak (n = 52, no. of misses = 21, miss rate = 40.4%) and (b) poplar (n = 
60, no. of misses = 18, miss rate = 30.0%) surfaces that scored the highest number of false positives
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values. Only one low contrast scratch appeared 
to have hit rates under 50%, while the great 
majority of scratches seemed easy to detect. 
Knife marks originate upstream during veneer 
slicing and have been subjected to multiple 
sanding processes throughout the production. 
Thus, by the time the doors reached pre-
delivery inspection, knife mark defects are 
very shallow, thus low contrast. Scratches can 
occur at every stage of the manufacturing 
process therefore resulting in larger variations 
in contrast values.
	 Bubble plots in Figure 11 illustrate how hit 
rates are related to both the contrast of the 
defects, with defect size and centroid distance 
from the centre of the image. From Figures 11a 
and b, besides the obvious fact that large defects 
are easier to detect, small sized scratches were 
also easy to detect due to their high contrast 
values. Knife marks, especially those smaller in 
size, were much harder to detect due to their low 
contrast.
	 The centroid distance to the centre of the 
image did not impact hit rates in this study 
(Figures 11c and d). The visual arc occupied 
by the images on the screen in this analysis was 
small therefore fell within the foveal area of the 
assessors’ eyes. In industrial settings where the 
door surface areas are much greater than that 
presented to assessors in our study and where 
workers are time-constrained, the location of 
the defect on the product is expected to play a 
significant role in the results.

	 Since knife marks are essentially low-contrast 
scratches from a specific origin, separating 
the defects into low- and high-contrast groups 
improved r2 and p-values for the low-contrast 
group. There was however still no correlation 
between SPARCS scores and high-contrast defect 
detection scores.

Expertise and gender factors

No significant difference was found between 
the performances of experts and non-experts, 
or between males and females (Tables 4 and 
5). One explanation is that human ocular 
psychophysical characteristics are the same 
throughout the human populace, and therefore 
performance is impacted largely by the ability to 
discern defect contrasts. Furthermore, wood is a 
common household material, hence familiar to 
most people.

Analysis of testing time

Having disregarded the results from the first nine 
sequences of images in this study, average time 
taken by an assessor to evaluate each defect is 
tabulated in Table 6. There appeared to be no 
real difference in time taken between detecting 
knife marks, scratches, or not detecting anything 
at all. There was also no significant difference 
between low- and high-contrast detection times 
using the Student’s t-test (assuming unequal 
variances) analysis, t(19) = -1.54, p = 0.14.

Figure 10	 Average hit rates of all defect images against their respective maximum Weber contrast values
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Figure 11	 Defect image hit rate against defect size for (a) scratches/dents, and (b) knife marks, and centroid 
distance to the centre of the image for (c) scratches/dents, and (d) knife marks; area of each 
bubble represents Weber contrast values, where solid bubbles denote positive values while empty 
bubbles denote negative ones; bubble area scale is kept constant between (a) and (b), and between 
(c) and (d), for easy comparison of contrast values between plots

Table 4	 Mean scores for test candidates based on gender and expertise level 

Candidate 
category

No. of 
candidates

Age (years) SPARCS Knife mark Scratch

Expert 22 33.3 (8.1) 86.9 (7.9) 59.5 (26.4) 89.3 (13.7)

Male 18 33.1 (7.4) 86.6 (7.3) 62.4 (26.8) 89.0 (14.4)

Female 4 34.3 (12.5) 88.3 (11.3) 46.3 (22.6) 90.7 (11.9)

Non-expert 56 21.2 (0.6) 87.6 (8.4) 64.8 (20.1) 92.7 (8.3)

Male 17 21.3 (1.0) 85.8 (9.5) 62.0 (17.1) 92.9 (5.6)

Female 39 21.1 (0.3) 88.4 (7.9) 66.0 (21.4) 92.7 (9.3)

Male 35 22.3 (5.1) 86.2 (8.3) 62.2 (22.3) 90.9 (11.1)

Female 42 27.4 (8.0) 88.3 (8.1) 64.2 (22.0) 92.5 (9.4)

Mean values followed by standard deviations in brackets
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CONCLUSIONS

Methodical analyses of defect data in the wood 
product industry are sparse, therefore this case 
study drew attention to the areas where research 
can be directed to improve wood product quality. 
The six-year dataset provided insight into the 
prevalent defects that plague the Malaysian 
door industry. Jointly, scratches and knife marks 
accounted for 30% of all defects and 2.35% of 
all doors inspected. These defects are disliked 
by end consumers and are difficult to eliminate 
entirely because of the handling required during 
the production process.
	 From the human behavioural study, under 
ideal conditions, human detection rates are 
contingent on the contrast and size of defects  
particularly those with Weber contrast levels 
under 0.1 (|IW| ≤ -0.1). The error rates for low 
contrast defects (as per Table 3) were rather high 
considering that the tests were conducted in the 
relative comfort of an office (QA executives) 
and a computer lab (undergraduate students) 
environment. Also, tests were conducted with 
images occupying a narrow visual arc, while the 
actual product (a door) encompasses a huge 
visual arc that workers need to assess. When these 
and other environmental and situational factors 
(such as fatigue and production targets) are 
added to the equation, error rates will invariably 
escalate. 
	 SPARCS contrast sensitivity test (and by 
extension, Pelli-Robson which SPARCS is 
benchmarked against) was found to be a 

suitable predictive test that provided scores that 
correlated with assessor ability to detect low-
contrast defects. It is therefore recommended 
that factories conduct periodic eye health 
assessments for workers, incorporating both 
Snellen and Pelli-Robson or SPARCS tests to 
improve defect detection rates.
	 There are several limitations recognised in 
the behavioural study. Tests were conducted 
using volunteers from a limited sample size of 
undergraduates and QA personnel from only 
one manufacturing facility, which may not be 
representative of the entire door manufacturing 
industr y in Malaysia. However, the lack of 
significant difference between experts and non-
experts indicates that defect detection ability of 
humans may be the same regardless of expertise. 
Future timed studies should be designed to take 
software acclimatisation period of the assessors 
into consideration.
	 In conclusion, there is a strong case for 
automating or semi-automating the detection 
process. The high rates of error caused by humans 
on top of prevailing issues with an ever-revolving 
workforce (hence the need for retraining) show 
that some degree of automation will be beneficial 
to the industry. Human behavioural results in 
this case study provide a useful baseline for any 
performance comparisons in future studies.
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	 Scratch 0.50 0.68 (67) p > α

p > α shows no statistical difference
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