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HEINONEN, J., SARAMAKI, J. & SEKELI, P.M. 1996. A polynomial taper curve
function for Zambian exotic tree plantations. Defining tree taper gives advantages in
deriving the utilisable portions of trees. A high degree polynomial is used to estimate
average relative taper. Some of the parameters of the polynomial should be functions
of diameter at breast height and total height of the tree, and the remaining parameters
can be held constant within a tree species. The study describes a somewhat simplified
version of the polynomial taper curve model developed by Laasasenaho and presents
a simple method for transforming the overbark taper curve models to underbark ones.
Taper curve functions for the main exotic tree species Pinus kesiya, Pinus oocarpa, Pinus
merkusii, Pinus michoacana, Eucalyptus grandis and Eucalyptus cloeziana in Zambia are
derived. The polynomial appears to fit equally well with differently tapering tree species
and gives good estimates for both over- and underbark diameters. Regression
functions for bark thickness are also given.

Keywords: Stem taper - stem volume - Pinus kesiya - Pinus oocarpa - Pinus merkusii - Pinus
michoacana - Eucalyptus grandis - Eucalyptus cloeziana

HEINONEN, J., SARAMAKI, J. & SEKELI, P.M. 1996. Fungsi keluk tirus polinomial
ladang pokok dagang Zambia. Menentukan keluk pokok memberikan kelebihan
untuk mendapatkan bahagian-bahagian pokok yang dapat digunakan. Polinomial
yang tinggi darjahnya digunakan untuk menganggarkan purata keluk yang berkaitan.
Beberapa parameter bagi polinomial tersebut sepatutnya berfungsi sebagai diameter
aras dada dan jumlah ketinggian pokok, dan parameter-parameter yang lain boleh
dijadikan konstan di dalam sesuatu spesies pokok. Kajian ini menerangkan mengenai
versi keluk tirus polinomial yang dipermudahkan yang dicipta oleh Laasasenoho dan
menghasilkan satu kaedah yang mudah untuk memindahkan model keluk tirus atas
kulit kepada model bawah kulit. Fungsi keluk tirus bagi spesies pokok dagang utama
Pinus kesiya, Pinus oocarpa, Pirus merkusii, Pinus michoacana, Eucalyptus grandis dan
Eucalyptus cloeziana di Zambia telah diperolehi. Polinomial didapati amat sesuai
dengan spesies pokok tirus yang berbeza dan memberikan anggaran yang baik bagi
diameter atas kulit dan bawah kulit. Fungsi-fungsi regresi untuk ketebalan kulit pokok
juga diberikan.

* Author for correspondence



340 Journal of Tropical Forest Science 8 (3): 339 - 354 (1996)

Introduction

The area covered by fast-growing exotic plantations is increasing. Plantation
management needs accurate information about the volume and assortment of
trees. One approach is to develop volume functions by means of regression analysis.
However, the dimensions for required log size can often change. When dimension
requirements change, the functions must be recalculated to match the new
dimensions. This is quite laborious and may result in incompatibilities when
successive volume estimates are compared. This difficulty can be avoided if a system
for describing stem taper is developed.

Taper curves can be expressed mathematically in many different ways, and
parameter estimation techniques may likewise differ greatly (e.g. Max & Burkhart
1976, Sterba 1980, Roiko-Jokela 1976, Kilkki et al. 1978, Cailliez 1980, Kilkki &
Varmola 1981, Laasasenaho 1982, Knoebel et al. 1984, Lappi 1986, Kozak 1988,
Perez et al. 1990). Different measurements of taper may be needed in the appli-
cation phase. Application programs may utilize different amounts of computing
capacity (e.g. Lahtinen & Laasasenaho 1979, Kilkki & Varmola 1981, Laasasenaho
1982).

Because plantations are ubiquitous, and in most cases, each plantation
requires its own taper curve functions for each species, the methods to develop
these functions need to be simple enough so that functions can be calculated
using ordinary microcomputer programs. This is especially important for
plantations in developing countries.

The aim of this study was to find a taper curve function system that can, given
diameter and height of the tree, produce reasonable and compatible estimates of
both over- and underbark volume to any given top diameter or to any given length
of the log for Zambian exotic tree plantations.

Taper model development

The polynomial taper curve function originally presented by Laasasenaho (1982)
was well suited to this study. The original method was simplified by reducing the
number of models needed for the taper curve function from four to three and by
developing a simple method in which two additional parameters are needed to
produce both overbark and underbark taper curve functions.

The taper model is of the form

~= y (i)
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where dm and d 1 3 are two diameters (cm) at heights ( m) m and 1.3 m respec-
tively, with 0 < m < h,
xm= 1-m/h, x 13 = 1-1. 3/ h, where h is the height of a tree, h> 1.3, and
P(xk) is a polynomial giving the diameter at relative height xk.

Polynomial P is of the form

P(x) = cv -x+ c2 -x2 + cs-x? + c^x* + c5~x? + Cg-x13 + c,-*21 + c8-r>4 (2)

where c]; e2,;.., cg are parameters. At the top of a tree the value of the
polynomial = 0. The powers used in the model are in accordance with the
so-called Fibonacci-series (Laasasenaho 1982).

Multiplying both sides by d} 3 model (1) can be written in the form

d = c P(x )m o ^ m'

where coefficient c = ]-30 p(^
Ratio of diameters at height m} and mz is given by

d P(x ) (3)m, v mi' \ /

~d~~ P(x )m-i N m-i '

There are eight parameters in the polynomial P. It is enough, however, if only
the three first parameters cv c2 and c3 are dependent on dl 3 and h and parameters
c4, c5,..., cg are constants.

Polynomial (2) can then be written in the form

P(xJ = (al+bl)-xm + (a2+bj-xl+ (a3+b3)-xl + b^xl + b5~x8
m

& m I m x3* (4)m ^ '

= P (x ) +Ph(x ) (5)a ^ m' h ^ m' ^ '

where

Pa(x) is a polynomial of the third degree, the values of the parameters av a2
and as depend on dl3 and h, and polynomial Pb(xm) is of the form (2) and the
parameters b}, bv by ..., bs are constant for a tree species.



342 Journal of Tropical Forest Science 8(3) : 339 - 354 (1996)

Polynomial Pb is called here the basic function, and it has been chosen to
describe the average taper. The parameters of Pb are estimated using the dia-
meters at different relative heights describing taper.

The polynomial Pb can be scaled in such a way that P4(0.8)=l, in which case
equation (3) reduces to

d

The parameters of P)p are calculated from equation

y. = Pb(X) + e (6)

where
nII <*,
na>.

n = number of trees,
.i refers to relative heights of diameters,
x. = l-.i,
.2 refersi to the relative height 0.2, and
e is the error term

Variable y . can be interpreted as a weighted mean of relative diameters at
relative height .i (Laasasenaho 1982).

The parameters can be calculated by the method of least squares. The height
of scaling 0.2. h, is such that the estimates of the size independent parameters of
the taper curve function are approximately optimal.

In addition to the polynomial Pft, two more models were developed and
estimated to impose restrictions on parameters of the size dependent correction
polynomial P. The models developed were

-TA =/4 0* 1.3' *) + £4 (7)

and

d 7
rt = / 7 W I - 3 , / » ) + £, (8)
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where

f4 and f are functions, the values of which depend on diameter d 3 and height
of the tree, and e4 and e7 are error terms.

Equation

Pa (0.9) = 0 (9)

was used as the third requirement for the parameters of polynomial P, which
means that the value of the correction polynomial equals 0 at relative height 0.1.
The purpose of equation (9) is to allow only a small correction to the taper curve
defined by the basic polynomial Pb. The form of the final taper curve depends only
weakly on the relative height in equation (9) and, for example, relative height 0.2
instead of 0.1 would have given practically as good results.

In his original version of the polynomial taper model Laasasenaho used three
regression equations essentially to get estimates of diameters at relative heights
0.1, 0.4 and 0.7 as functions of breast height diameter and height (Laasasenaho
1982). In the first phase, the parameters of the correction polynomial were
determined so that, after the first correction, the taper curve function passes
through the estimates of diameters at these three relative heights. In the second
phase, he calculated a correction coefficient to make the taper curve function pass
through the diameter at breast height. Because of the correction coefficient, the
final taper curve function does not usually give the same estimates of diameters
as the regression models and only the ratios of the three estimates of diameters
are compatible with the regression models. The same properties can be obtained
more simply by using two regression models (7) and (8) and one restriction (9)
which is independent of the tree species.

From (3), (7), (8) and (9) a group of three equations are derived:

P f l( .6)+P4( .6)
P a ( . 9 )+P 4 ( . 9 ) - - /4

Pa (.3) + Pb (.3) (10)

P (0.9) = 0

where

f4 and f are values of functions (7) and (8) given dl 3 and h of a tree.
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Equation (10) can be written further in the form

a , •. 6 + a 2 •. 6 * + a, •. 6s = /4 • Pt (. 9) - P4 (. 6)
1 2 3 J7 b b

, . . Q I « O 2 i . Q3 _ C\

The solution of (11) can be given, for example, by

~ 0.054"

_ (Pt ( .6)- /4-P t( .9)- .27-q3) (12)
~ 0.18

= - .9 -a 2 - .81-a ,

After parameters av «2 and as have been calculated, equation (4) provides the
final parameters of the taper curve function P. Diameter at height m is estimated
by using equation ( 1 ) . The height at which a given diameter is reached is solved by
iteration.

Volume vol(mr m^) between heights ml and mz is estimated by integrating a
squared taper curve function

c ~° • ~h [x
. l

J *
(13)

40

where
ml and m2 are given heights, m1 < my

In equation (13) volume is given in litres when dv 3 is in centimeters and height
in meters.

The overbark model for tapering can be transformed into the underbark model
by means of two additional equations

duA ,d±y
du , - \d)

(14)
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and

du, /rf,N*7 (15)

du , \dl

where du, j=l ,4and7 are underbark diameters at relative heights 0.1,0.4
and 0.7 and k4 and k^ are parameters.

Parameters k4 and kj can be estimated either by nonlinear regression or by using
the logarithmic transformation of models (14) and (15) and linear regression.

For underbark taper curve function, the overbark polynomial Pb is used in
equation (5) and in equations (12)f and fj are replaced by f, * and f respect-
ively. This modification makes the underbark estimates practically unbiased. The
diameter d} s in equation (1) is replaced by underbark diameter dul 3 if known, or
otherwise, by an estimate of it.

Taper curve functions for Zambian exotic tree plantations

Material

Material consisted of the six main plantation species in Zambia, namely Pinus kesiya,
P. oocarpa, P. merkusii, P. michoacana, Eucalyptus grandis and E. cloeziana. Table 1
provides general information about the material, all of which was collected from
the Copperbelt area - the main plantation area - of Zambia. The data used for E.
grandis were a random sample of about 1300 felled sample trees. For the rest of
the species, all available felled sample tree material was used. All data consisted
partly of trees from research plots and partly of random samples from commercial
compartments.

The trees had been measured at fixed intervals from ground level. The measur-
ing heights were 0.2, 0.5,1.0,1.3,2.0, 4.0 m and then at two meter intervals to the
tip. The parameters of the basic polynomial Pbwere estimated using the diameters
at the relative heights of 0.01,0.025,0.05,0.075,0.10,0.15,0.20,0.25,0.30, ...,0.85,
0.90 and 0.95. Diameters of each tree were derived by using measured diameters
and interpolating. Spline function of the third degree polynomial was used as the
interpolating function.

For most of the trees, underbark diameters were measured after peeling, but
part of the data from P. oocarpa and P. merkusii and all data from P. michoacana were
measured using a bark gauge.

As can be seen in Figure 1, the distribution for P. michoacana was especially
narrow. To ensure that the function continues logically outside the measured
range, 24 of the biggest P. kesiya sample trees were also used for deriving the
parameters for P. michoacana. For the other species, the range approximately
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covers the existing sizes. Material from E. cloeziana contained a few very big trees -
breast height diameter over 70 cm -which were excluded from the calculations to
avoid introducing bias to smaller trees.

Table 1. Description of the data

Species Observation

P. kesiya 506
mean
std. dev.
minimum
maximum

P. oocarpa 221
mean
std. dev.
minimum
maximum

P. merkusii 180
mean
std. dev.
minimum
maximum

P. michoacana 89
mean
std. dev.
minimum
maximum

E. grandis 388
mean
std. dev.
minimum
maximum

E. cloeziana 202
mean
std. dev.
minimum
maximum

Diameter
(cm)

21.59
7.00
6.7

45.8

16.61
5.21
5.3

29.1

20.23
6.29
4.6

35.5

15.18
4.64
5.7

27.7

21.61
8.71
5.8

54.8

29.22
11.36
9.1

64.6

Height
(m)

19.13
4.54
4.8

32.9

15.75
4.60
4.0

26.6

14.30
5.11
2.9

23.9

7.11
1.66
3.7

11.3

27.66
7.26

11.8
43.6

29.48
7.56

10.4
45.8

Volume
(dm3)

359.7
309.1

15.5
1839.0

186.2
131.9

5.8
697.1

251.4
197.7

5.4
863.0

77.7
56.6

7.4
281.3

584.4
589.0

16.9
3741.9

1065.9
1034.1

43.9
5631.1

Functions

The parameters of the basic function Ph in equation (5) are presented in
Table 2. Non-significant t values were observed for some of the coefficients but
for the sake of similarity they were kept in the model.
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Figure 1. Diameter-height distributions of studied species
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The overbark diameter correction models (7) and (8) were of the form:

pn 'A +A* -tf+pn
/>74-ln(A)

(16)

(17)

Table 2. Parameter values and se's (in brackets) of the basic function P

Species

P. kesiya

P. oocarpa

P. merkusii

P. michoacana

E. grandis

E. cloeziana

Species

P. kesiya

P. oocarpa

P. merkusii

P. michoacana

E. grandis

E. cloeziana

*!

2.05502
(0.08716)
1.57420

(0.06889)
1.34171

(0.04610)
0.85477

(0.05.725)
2.54410

(0.10192)
1.88208

(0.05884)

»5

-3.10063
(2.55395)
- 6.22372
(2.01859)
- 5.94221
(1.35090)
- 1.84468
(1.09154)
- 1.65063
(2.93651)
0.84461
(1.72413)

b*

-0.89331
(0.71372)
1.97480

(0.56411)
2.43816

(0.37752)
3.35553

(0.30504)
- 3.32322
(0.83460)
- 1.26653
(0.48182)

*6

1.50246
(2.07584)
3.70583

(1.64070)
2.68227

(1.09801)
0.23140

(0.88720)
2.07501

(2.42742)
- 0.37522
(1.40137)

\

-1.50615
(1.58429)
-6.14061
(1.25219)
- 6.71972
(0.83801)
-5.81309
(0.67712)
2.37636

(1.85262)
0.92643

(1.06953)

*,

- 0.05514
(1.17985)
- 1.46734
(0.93253)
- 0.78642
(0.62408)
0.10631

(0.50426)
- 1.53745
(1.37968)
-0.12726
(0.79649)

*4

3.47354
(2.28131)
7.55100

(1.80310)
8.12709

(1.20669)
4.40126

(0.97502)
0.14854

(2.66770)
- 0.88706
(1.54008)

*8

0.00070
(0.34978)
0.47656

(0.27646)
0.15286

(0.18501)
- 0.02063
(0.14949)
0.75849

(0.40902)
0.43393

(0.23613)

The parameters of functions (16) and (17) are presented in Table 3.
The exponents k4 and k7 in transformation equations (14) and (15) are pre-

sented in Table 4.
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Table 3. Values for parameters and s (in brackets) of functions (16) and (17)

Species

P. kesiya

P. oocarpa

P. merkusii

P. michoacana

E. grandis

E. cloeziana

A,

0.03975
(0.00176)
0.05141

(0.00234)
0.04500

(0.00305)
0.04845

(0.00370)
0.03230

(0.00074)
0.03085

(0.00136)

Parameter

Ai

- 0.000720464
(0.000056853)
-0.00124492
(0.00009821)
- 0.000995659
(0.000136960)
-0.00103268
(0.00012186)
- 0.000472216
(0.000017592)
- 0.000432485
(0.000032180)

Aa

1.02551
(0.05480)
0.99196

(0.04518)
0.96686

(0.04844)
1.04963

(0.05167)
1.30911

(0.03466)
1.28659

(0.06346)

Species
Parameter

ft, A,

P. kesiya

P. oocarpa

P. merkusii

P. michoacana

E. grandis

E. cloeziana

0.05065
(0.00353)
0.06003

(0.00528)
0.04512

(0.01220)
0.02821

(0.01721)
0.01957

(0.00260)
0.03825

(0.00610)

- 0.000806335
(0.000064316)
-0.00112353
(0.00012540)
-0.00101906
(0.00027148)
- 0.000704661
(0.000325987)
- 0.000319540
(0.000025887)
-0.000416219
(0.000058984)

0.46317
(0.05372)
0.43268

(0.04800)
0.34484

(0.06137)
0.38952

(0.05163)
0.82998

(0.04080)
0.86827

(0.07705)

- 0.03557
(0.00525)
- 0.04070
(0.00722)
-0.01262
(0.01502)
0.01107

(0.01837)
0.00436

(0.00551)
- 0.04239
(0.01159)

Table 4. The values of exponents A4 and A, and their se (in brackets) in logarithmic
correction equations in (14) and (15) for underbark relation between
relative diameters at 40 and 10 % and at 70 and 10 % relative heights

Species k4 k.

P. kesiya

P. oocarpa

P. merkusii

P. michoacana

E. grandis

E. cloeziana

0.85605
(0.01306)
0.76337

(0.02164)
0.86768

(0.02005)
0.83770

(0.03993)
0.93418

(0.00991)
0.99299

(0.02230)

0.96841
(0.00909)
0.89674

(0.01369)
0.96284

(0.01288)
0.96287

(0.02578)
1.01400

(0.00744)
1.05088

(0.01644)
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Regression functions for relative bark thickness at breast height ( 6, 3) were
(standard deviations in parentheses)

P. kesiya ^ ,/</, 3

P.oocarpa &13/d,s

P.merkusii f t l s /rf , s

P. michoacana \ z/d}

E.grandis ft,s/d,3

E.cloeziana bl3/dl3

= 0.10457 + 1.04924/A- 0.00000101365 -rf, ̂
(0.01205) (0.16468) (0.00000037695)

= 0.25217 + 0.94754/h- 0.04507 In(d13)
(0.06106) (0.20077) (0.01781)

= 0.22901- 0.0000040200 -A -d, /
(0.00398) (0.0000004150)

= 0.27384 - 0.00602964 •dl 3+ 0.56221//Z
(0.05974) (0.00188714) '(0.22112)

= 0.02223- 0.00296948 -A + 0.04391 • ln(rf,s)
(0.017665) (0.00063098) (0.01112)

= 0.21038 - 0.00253916 •&
(0.01453) (0.00047292)

(18)

The reliability of the functions

The reliability of the system was tested by comparing both measured diameters
and volumes with those of estimated measurements.

Table 5 did not show any marked deviations, even though the average volume
deviation for E. cloeziana was greater than for the other species. Most of the
deviations were positive, which is according to expectations. Diameter deviations
were also tested by relative heights (Figure 2). The correction system gives the
ratios of diameters at relative heights 40 % and 10 % and the ratios of diameters
at relative heights 70 % and 10 % were unbiased. As the stem tapers more at the
base and no fixing points lower than at 10 % relative height are present, the greatest
deviations were found at the stump level. On average, maximum mean deviations did
not exceed 3 mm and in most cases mean deviations were less than one mm.
These deviations do not have very much practical value even though they cause
bias in tree volumes.

The same trend as for overbark diameters appeared for underbark estimates.
The mean deviations for underbark diameters were almost equal to the overbark
deviations (Table 5). The variation of deviations was slightly greater. This system of
calculating underbark diameters does not always guarantee correct values for bark
volume, but the estimates for underbark diameters are reliable and compatible. A
few tests were made to compare estimated and measured bark thicknesses. The
differences were found to be reasonably small and no contradicting thicknesses
were seen along the stem.
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0.0 0.2 0.4 0.6 0.8 1.0

Relative height

Figure 2. Mean deviation (-) and standard errors of deviations (I) in diameter at different
relative heights by diameter class in Pinus kesiya material

•o

CO.o

120

60

cco -60

-120

V—1183

10 20 30 40

d13. cm (overbark)

50

Figure 3. Mean deviations (-) and standard errors of deviations (I) in volume in different
diameter classes in Pinus kesiya material. Number of stems and mean size (dm3)
are presented at the top of each class
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Volume deviations were tested by diameter classes and no marked trend was
seen but the variation of deviations - in absolute terms - increases with increasing
size of the tree (Figure 3). Relative deviations and their standard deviations remain
the same throughout the size range. Underbark volume estimates were as good
as overbark volume estimates as can be seen from Table 5. Volume deviations to any
log length or top diameter were not separately tested, but these are not expected
to be significantly different from total volume deviations.

Table 5. Average differences (upper figure) and standard deviations of differences (lower
figure) between measured and estimated values of diameters as a mean of all
23 relative heights and total volumes, a'. = diameter, v = volume, u - underbark,
est = predicted, uest1 = predicted using measured bark thickness at 1.3 m,
ues& = predicted using equation (18)

Difference

d-dal(cm)

d - d (cm)

• d - d (cm)

i) " v (dm )

(v-v ,)/v (

if - v (dm )

(v-v e)/tiMfi

Difference

E. grandis

-0.0376
0.9929

- 0.0457
0.9514

-0.0681
1.1303
0.9739

62.3815
- 0.0002

0.0819
5.6409

60.9801
0.0018
0.0904

P. oocarpa

Species
E. cloeziana

0.0809
1.7175

- 0.0900
1.5526

- 0.0746
1.7513

23.0823
184.8664

0.0278
0.1464
7.5746

165.8456
0.0027
0.1603

Species
P. merkusii

P.kesiya

0.1146
1.0992
0.0512
1.0341
0.0536
1.1490
6.0338

38.8969
0.0234
.0.1036
6.1859
39.2736
0.0217
0.1377

P.michoacana

d- d^ (cm)

v - val (dm3)

0.0868
0.8561

-0.0417
0.8685

- 0.0389
0.9910
3.8789

20.0403
0.0203
0.0910
0.9161

21.8132
0.0113
0.1479

0.0268
1.4288
0.0214
0.9077
0.0265
0.9508
2.8820

36.2984
0.0186
0.1818
0.6964

24.7322
0.0110
0.1156

-0.0413
0.8313

-0.1540
0.8615

-0.1540
. 0.8837
- 0.2207
6.8864

-0.0014
0.0855

-1.9711
7.4289

- 0.0229
0.1266
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Discussion

The presented taper curve system is based on a high degree polynomial which is
flexible enough to estimate tree taper reasonably well. As it was first presented by
Laasasenaho (1982) the dimensionless relative figures seem to be quite stable
within a species and the polynomial of the third degree describes, with reasonable
precision, the size dependent differences from the average tapering of a tree
species.

In the presented system, diameter and height of a tree must be known. The
dependence of tapering on the size of a tree is given by two functions as compared
to Laasasenaho's (1982) three functions. Two functions seem to be enough when
only diameter at breast height and height of a tree are known. However, more
measured information about tree taper would have been more suitable for bigger
trees. For instance, some higher diameter as used by Laasasenaho (1982) would
have improved the accuracy of the estimation. The use of regression equations
for volume estimation would have given at least as good results as the presented
system. However, the flexibility and compatibility of assortment calculations is a
clear advantage in the present system.

Compatibility of underbark with overbark volumes is also secured. Although
the tree species differed remarkably by stem form, the estimated volumes were
equally accurate for all species.
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