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INTRODUCTION

Tectona grandis plantations are an important 
source of good quality timber for industries, 
as its resistance and workability are similar to 
mahogany or cedar. About 2.0 to 2.5 million 
cubic meters of teak are annually harvested 
from natural and seminal stands. Due to the 
declining supply from natural forests, the market 
for cultivated teak timber is promising (Kollert 
& Kleine 2017).
	 Accurate tree volume estimates are a crucial 
task in forest research. Their obtainment for any 
merchantable limit remains a challenge for forest 
managers because it can hardly be obtained 
in the field (Arias-Rodil et al. 2015, Bouriaud 
et al. 2019). Thus, research related to volume 
modelling and stem taper are fundamental to 
gather reliable and precise information of forest 
products (Macfarlane & Weiskittel 2016). To 
achieve, it is often necessary to use sophisticated 
modelling techniques such as taper equations 
(Fonweban et al. 2011).
	 Taper equations provide more useful 
information compared to standard volume 
functions, since they can (1) estimate diameter 

at any point along the longitudinal profile of 
the stem, (2) estimate the merchantable height 
at any given diameter, and (3) calculate the 
volume of individual sections of any length at any 
height (Kozak 2004). Seeking this multiplicity of 
responses, many researchers developed several 
taper equations in the last few years, intended to 
precisely estimate diameters, heights and volumes 
along the stem of trees (Schoepfer 1966, Max & 
Burkhart 1976, Kozak 1988, Kozak 2004).
	 To fit stem taper models, several diameter 
measurements are taken along the bole, 
following a natural and correlated hierarchical 
structure (Garber & Maguire 2003). The mixed-
effects models were then introduced in forest 
mensuration as a new approach to model the 
longitudinal profile of stems (Cao & Wang 
2011, Gomez-García et al. 2013). In addition 
to the fixed effects that are common to all 
individuals, they include parameters with random 
effects that are unique to individuals or groups 
within the data set (Calama & Montero 2006, 
Cao & Wang 2011, Gomez-García et al. 2013, 
Ruslandi et al. 2017, Ferraz-Filho et al. 2018). 
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estimates of diameter and volume along the stem. The use of the diameter at breast height (DBH) as prior 
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With these techniques, it is possible to develop 
more accurate models and obtain more precise 
responses of forest productivity.
	 Forest literature has shown that mixed-effects 
models can improve predictive power and 
reduce residual bias, leading to smaller errors 
than traditional fixed effects models (Calama 
& Montero 2006, Cao & Wang 2011, Bouriaud 
et al. 2019). This kind of modelling allows 
autocorrelation to be, at least partially, explained 
by the inclusion of random effects. However, the 
magnitude and distribution of these random 
effects are rarely reported (Bouriaud et al. 2019). 
The mixed effects approach can also predict a 
specific response for a new tree through fixed 
parameters and random effects, if at least one 
diameter measurement is available (Arias-Rodil 
et al. 2015).
	 The mixed-effects modelling can provide 
both mean and subject-specific responses, based 
on the random effect considered. Using the 
trees as a random effect, a mean response will 
be obtained if the fitted fixed parameters are 
used, and a specific response will be obtained for 
each measured tree with the inclusion of random 
effect. The individual responses are acquired 
from a calibration process based on a Bayesian 
estimate approximation (Vonesh & Chinchilli 
1996). It requires the measurement of the 
diameter in certain stem positions for the trees 
in which the random effect will be predicted, in 
order to compare with the diameters estimated 
by fixed parameters of the model. These are 
then used in the residual matrix, required by 
the calibration process. Thereby it is necessary 
to investigate different points of measurement 
of diameters along the stem, to obtain prior 
information for Bayesian estimator.
	 Since the absence of autocorrelation between 
observations is one of the basic assumptions of 
regression analysis, this study aimed to assess 
the calibration of a mixed-effects model to 
estimate diameters and volumes along the stem 
of Tectona grandis. The study was designed with 
the hypothesis that the use of the diameter at 
breast height (DBH) as prior information on 
taper equations of the calibration process reduces 
residual autocorrelation, and provides accurate 
diameter and volume estimates.

MATERIALS AND METHODS

The study was carried out in five 25-year-
old Tectona grandis seminal stands, located 

in Brasnorte, Mato Grosso State, Brazil. The 
Brasnorte region has a tropical rainforest 
climate, with temperature varying from 4  to 
40 °C, and mean annual precipitation of 2250 
mm, distributed between November and March 
(Alvares et al. 2014).
	 The log volumes of 509 trees were calculated 
using relative height method, taking diameter 
measurements along the stem at 0, 1, 2, 3, 4, 5, 
15, 25, 35, 45, 55, 65, 75, 85 and 95% of total 
stem height, and the volume of each section was 
calculated via Smalian method. The variable-
exponent taper equation from Kozak (2004) was 
then fitted using the nonlinear least squares (nls) 
function available in the R software (R Core Team 
2017). The significance of the fitted parameters 
was tested with a T-test at 5% probability level.

di = β0d
β1hβ2

where βi = parameters to be estimated, d = 
diameter at breast height (cm), h = total height 
(m), = aboveground height at relative sections 
(m), X = hi/h; = diameter at a given height (cm).
	 The final form of the stem taper model 
was chosen based on the percentage standard 
error (Syx%), pseudo-R² (the squared Pearson’s 
correlation between measured and predicted 
values) and Akaike information criterion (AIC) 
(Burnham & Anderson 2002).
	 For the mixed effect model, single tree was 
considered as a random effect. Combinations of 
three parameters were set as random, and the 
remaining were set as fixed, using the nonlinear 
mixed effect (nlme) package (Pinheiro & 
Bates 2000). To solve the resulting dependency 
between observations originated from the 
consecutive diameter measurements along the 
stem of the trees, a first order autoregressive 
structure was used with the correlation function, 
available in the nlme package (Garber & Maguire 
2003, Li & Weiskittel 2010, Rodríguez et al. 2013, 
Schröder et al. 2014).
	 Since Kozak’s variable-exponent model cannot 
be directly integrated, the estimated log volumes 
at every measured section were calculated by 
numerical integration with integrate R function 
(Kozak 2004).
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	 The indicated combination of random 
parameters was chosen by comparing the 
estimates of diameter and volume of both mixed 
model and the basic formulation of the taper 
model with fixed effects. To compare the models, 
the relative root mean square error (RMSE%) 
was used as a measure of precision gain.
	 To assess the calibration process of mixed 
modelling, the indicated combination of 
random parameters was used, based on the 
aforementioned precision measure. The 
calibration of diameters was performed upon a 
set of 18 trees which were not part of the training 
data set, and the prediction of random effects was 
obtained from the Bayesian estimator (Vonesh 
& Chinchilli 1996, Trincado & Burkhart 2006, 
Meng & Huang 2009, Yang et al. 2013):

	 μij =  resij

where μij = vector of random effect parameters, 
 = variance-covariance matrix for the random 

effect parameters, Zi = partial derivatives matrix 
with respect to the random effect parameters,  
= residual variance matrix, resij = model residuals 
at the i-th position of the j-th tree, defined as the 
difference between the observed diameter at a 
given bole height and the predicted diameter at 
that same height with fixed parameters of the 
equation.
	 Since the Bayesian estimator requires 
measurement of diameters at several positions of 
the stem to obtain residual matrix, the calibration 
was performed testing nine combinations of 
diameters along the stem of new trees (Vonesh 
& Chinchilli 1996):

i) 0 and 4% of total height, ii) 1 and 4% of total 
height, iii) 1 and 15% of total height, iv) 1 and 
35% of total height,(v) 1% of total height and 
1.30 m, vi) 4 and 35% of total height, vii) 4 and 
15% of total height, viii) 1.30 m and ix) 1.30 m 
and 35% of total height.

	 The diameter and volume estimates along the 
bole for the 18 trees based on calibration process 
were assessed using RMSE%, as well as graphics 
analysis of the autocorrelation and the average 
stem profiles.

RESULTS

The parameter estimates were significant at p 
< 0.05. The values of pseudo-R², Syx (%) and 

AIC statistics were 0.95, 8.55 and 31,050.41, 
respectively. The autocorrelation between 
residuals for the evaluated model is shown in 
Figure 1, which presents the scatter between 
εi and εi–1, εi–2, εi–3, …, εi–n. A model fitted 
with only fixed parameters retains a residual 
autocorrelation pattern and diverges from an 
ideal situation where the pairs of residuals are 
centered in the origin (Gujarati & Porter 2008).

Figure 1 	 Residual autocorrelation of the diameter 
measurements along the bole for 
standard fixed-effect model

	 The combination of parameters β0, β4 and β8 
provided a difference of 45.03% (3.85 percentage 
points) and 73.50% (10.43 percentage points) to 
diameter and volume estimates, respectively, in 
RMSE statistics, with respect to Kozak’s (2004) 
model in fixed formulation.
	 The RMSE% of the diameter and volume 
estimates along the relative height combinations 
tested in the calibration process is shown in Table 
1. The combination of 4 and 35% of total height 
for the calibration of mixed model resulted in 
the lowest values of RMSE%, both for diameter 
and volume estimates along the stem, while the 
combination of 1 and 4% of total height provided 
the biggest values.
	 Comparing the mean of observed and estimated 
values (Figures 2 and 3), similarities were observed 
among the combination profiles of relative heights 
tested in the calibration. In fact, only few profiles 
(1–4% and 1%–1.30 m) showed biased estimates at 
the top of the stem, underestimating the diameters 
and volumes. Autocorrelation analysis among 
residuals of different height combinations used in 
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the calibration process (Figure 4) showed reduced 
error in combinations 1– 5%, 4–35%, 1.30 m and 
1.30 m–35%.
	 The RMSE% of the calibration process at 
relative heights along the stem (Figure 5) used 
only the diameter at 1.30 m when calibrating 

new individuals. The lowest stem portions of 
the 18 trees used for calibration contained the 
most noble products, where the RMSE% statistic 
remained below 6 and 9% for both diameter and 
volume, respectively. 

Table 1 	 Root mean squared error (RMSE%) of diameter and volume 
estimates along the bole at different heights tested for mixed-
effect model calibration

Tested heights for 
calibration

RMSE (%)

Diameter Volume

0 and 4% 7.71 12.58

1 and 4% 15.74 20.64

1 and 15% 8.97 13.60

1 and 35% 6.15 7.23

1 and 1.30 m 11.56 14.76

4 and 15% 10.44 20.82

4 and 35% 5.69 6.61

1.30 m 6.48 9.65

1.30 m and 35% 7.75 7.32

Figure 2 	 Mean stem profiles of observed and estimated diameter at different heights tested in the 
calibration; from (a) to (i): 0 and 4%, 1 and 4%, 1 and 15%, 1 and 35%, 1% and 1.30 m, 4 and 
15%, 4 and 35%, 1.30 m, 1.30 m and 35%
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DISCUSSION

The fit statistics and precision measures showed 
good results in general, with a low value of 
standard error and high pseudo-R² value. For 

the latter, a value of 0.95 was obtained, indicating 
that the equation was able to properly explain the 
diameter estimates along the stem. Although this 
statistic is not a proper measure to assess non-
linear models, it is easy to interpret and is often 

Figure 3 	 Mean profiles of observed and estimated volume at different heights tested in the calibration. 
From (a) to (i): 0 and 4%, 1 and 4%, 1 and 15%, 1 and 35%, 1% and 1.30 m, 4 and 15%, 4 and 
35%, 1.30 m, 1.30 m and 35%

Figure 4 	 Residual autocorrelation of diameter and volume estimates at different heights tested in the 
mixed-effect model calibration. From (a) to (i): 0 and 4%, 1 and 4%, 1 and 15%, 1 and 35%, 1% 
and 1.30 m, 4 and 15%, 4 and 35%, 1.30 m, 1.30 m and 35%
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used to evaluate models in forest mensuration 
(Spiess & Neumeyer 2010, Schröder et al. 2014). 
Besides, many computer programs calculate R² 
for non-linear fits, which unintentionally confirms 
its recurrent use (Spiess & Neumeyer 2010).
	 The Kozak’s (2004) variable-exponent model 
fit presented residual autocorrelation (Figure 
1) due to its consecutive measurements in each 
tree. It is reasonable to expect that observations 
of each tree are spatially correlated, and that 
the assumption of independence of residuals is 
violated (Rojo et al. 2005). Gujarati and Porter 
(2008) pointed that, although the parameter 
estimates of least squares remain unbiased and 
normally distributed, they lose efficiency when 
residual autocorrelation is present. Although the 
parameter estimates are significant, the standard 
error of each parameter might be inappropriate 
and biased, leading to biased estimates of the 
response variable (Calama & Montero 2006, Tang 
et al. 2016).
	 In this research, a random effect was 
introduced in three parameters of the taper 
model. However, it is possible to associate a 
random effect in every parameter estimate, 
but the excessive number of parameters might 
hinder the convergence when fitting the model. 
Previous research limited including two or three 
random parameters, aiming the fit convergence 
(Bouriaud et al. 2019).
	 Fonweban et al. (2011) used mixed-effects 
modelling to evaluate the stem profiles of 
Picea sitchensis and Pinus sylvestris using three 
random parameters, showing 45 to 63% accuracy 
improvement in traditional method.
	 The mixed-effects modelling applied in 
Kozak’s (2004) variable-exponent model was 

also tested by Schröder et al. (2014), which 
emphasised that, despite the practical use of 
least squares in taper equations modelling, its 
predictive power is surpassed when using mixed-
effect models.
	 This kind of modelling can provide both 
a mean response curve and subject-specific 
curves for groups or individuals where the 
random component is applied (Schabenberger 
& Pierce 2001, Westfall 2016). However, for 
a mean curve estimated by fixed parameters, 
the curve is conditioned to random effects. 
Therefore the model can capture part of the 
dependence between observations, considering 
the autocorrelation in each individual in its 
covariance structure (Verbeke et al. 2014), such 
as the tree in the study.
	 For the remaining parameters β1, β2, β3, β5, 
β6, and β7, where no random component was 
included, the mixed modelling improved their 
efficiency, since the variance has decreased, 
thereafter resulting in precision gain.
	 Despite the combination of 4 and 35% of 
total height provided the lowest values of RMSE 
(%) in calibration of the mixed model (Table 1), 
the use of the DBH (1.30 m) resulted in good 
values when estimating diameter and volume, 
with RMSE below 10%. This implied that, in 
field work, the measurement of diameter at many 
points of the stem, as prior information to predict 
the random effects, would not be necessary. 
Moreover, field measurements would not be 
time-consuming or costly, making the calibration 
technique feasible.
	 When evaluating the residual autocorrelation, 
Garber & Maguire (2003) pointed out that even 
for calibrated models, when predicting the 

Figure 5 	 RMSE (%) for (a) diameter and (b) volume of the stem in the calibration 
process, using only the height of 1.30 m to calibrate new individuals
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random effects of new individuals, the residual 
autocorrelation may not be completely corrected. 
It is reasonable to assume that equally spaced 
measurements are spatially correlated along 
the stem of a tree, which reflects in the residual 
estimates.
	 The diameter and volume estimates at the 
lowest part of the stem presented an average 
error, inferior to 9% (Figure 5), and reduced 
the residual autocorrelation (Figure 4). This 
confirmed the assumption that including 
random effects of a new tree, based on the 
Bayesian estimator, improved the predictive 
power of the model, mainly the lowest part of the 
stem (Trincado & Burkhart’s 2006). Calibrating 
a mixed model with Bayesian estimator can be 
more accurate and practical than techniques 
that incorporate auxiliary variables into stem 
profile models (Dean 2003, Henning & Radtke 
2006).
	 In the current increasing intensity of forest 
management and decrease of merchantable 
diameter limits, more accurate techniques are 
required to determine the diameters and volumes 
along the bole of trees through calibration 
process, and to assess the productivity with 
respect to different regimes (Garber & Maguire 
2003). The precise individual estimates and the 
fulfillment of the assumptions of regression 
analysis by mixed-effects models provide benefits 
to future forest managements.

CONCLUSION

The Bayesian calibration process provided 
accurate individual estimates of diameters and 
volumes along the bole of Tecnona grandis as a 
promising technique to predict random effects 
in taper models.
	 The DBH, as prior information stem taper to 
obtain residual matrix, was efficient in reducing 
residual autocorrelation. Hereafter, there will be 
no need to take more measurements along the 
bole in forest inventories.
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