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The present work deals with the classification of mangrove forests and determination of their health 
spatially using Airborne Visual Imaging Infrared Spectrometer–Next Generation data over a portion of 
Indian Sundarbans. The objectives were to test pixel-based classifiers and object-based approach for 
classification of mangroves into floristic composition classes and map the health status of the forests. Five 
known spectral indices were applied in Decision Tree algorithm for identifying mangrove forests, followed 
by creation of a mangrove mask of the study area. Spectral Angle Mapper, Support Vector Machine (SVM), 
and Object-Based Image Analysis classifiers were separately evaluated on the data within the mask. The 
overall classification accuracy was highest in SVM (99%). A total of 10 floristic composition classes were 
obtained. The classes were further classified into three health classes, viz. most healthy, moderately healthy 
and less healthy/stressed using different vegetation indices for greenness, light-use efficiency, leaf pigments 
and canopy moisture contents. The methodology presented here holds good opportunity to be applied to 
other mangrove forests for producing mangrove health maps at finer levels. 

Keywords: Airborne hyperspectral data; support vector machine; vegetation indices; decision tree; 
mangrove health

INTRODUCTION

Mangrove forests or “mangals” are a type of 
intertidal wetland ecosystems. These forests 
grow in harsh environmental conditions with 
high levels of salinity, high temperature, extreme 
tides, high rates of sedimentation and muddy 
anaerobic soils. Sundarbans is considered to be 
one of the world’s largest blocks of mangrove 
ecosystem. Presently, Sundarban Biosphere 
Reserve has about 26 true mangrove species, 
29 mangrove associates and 29 back mangrove 
species belonging to 60 genera and 40 species 
(Sundarban Biosphere Reserve 2006).
 The application of hyperspectral technology 
may be a step closer for accurate discrimination 
of tropical mangrove species. The potential of 
hyperspectral imaging and image processing 
has already been demonstrated for numerous 
applications in vegetation structure, composition 
and physiology (Kumar et al. 2001). The 
advantage is mainly due to its ability to measure 

reflectance and absorption in large number 
of narrow and contiguous spectral bands, 
generally covering 400 to 2500 nm range of 
the electromagnetic spectrum. Measurements 
beyond the non-photosynthetic spectral range 
facilitate new possibilities to differentiate 
mangroves based on additional components, 
such as leaf water content and leaf chemistry in 
relation to ecosystem (Mc Donald 2003, Schmidt 
& Skidmore 2003). Hyperspectral data allows 
for better separation of feature types based on 
their unique spectral reflectance and absorption 
characteristics (Held et al. 2003). These data may, 
therefore, improve our ability to differentiate 
mangroves from other terrestrial forests and then 
classify the forests at species-level. 
 Many studies have been carried out in 
the past few years on mangrove forests using 
satellite hyperspectral image data. Although, 
the researches included determination of health 
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of the mangroves using two vegetation indices, 
namely, Enhanced Vegetation Index (EVI) and 
Structure Insensitive Pigment Index (SIPI), no 
details were given regarding the generated health 
outputs by using the two indices.
 The mapping accuracy of a mangrove forest 
strongly depends on the classification technique 
adopted (Green et al. 1998). In comparison 
to unsupervised or supervised classification 
methods, Decision Tree (DT) classifier is 
computationally faster (Friedl & Brodley 1997). 
Different vegetation/spectral indices have been 
computed using multispectral and hyperspectral 
space-borne satellite imagery for characterising 
the mangrove forests (e.g. Kamal et al. 2016, 
Kumar et al. 2019), but such investigations are 
insufficient in the domain of high resolution 
airborne hyperspectral data over Sundarbans 
mangroves. Moreover, there are virtually no 
authentic studies on the classification of Indian 
Sundarbans mangroves using high resolution 
airborne hyperspectral image data. There is lack 
of reports on the classification of these mangroves 

at species-level with accuracy assessments of the 
classified outputs using ground truth data. 
Additionally, it would be useful to determine 
the health of these mangrove forests/mangroves 
species using different vegetation indices in DT 
algorithm.
 The objectives of the present study were to 
test the pixel-based classifiers and object-based 
approach for classification of mangroves into 
floristic composition classes and determine the 
health status of the mangroves spatially.

MATERIALS AND METHODS

Study area

The pristine mangrove habitats of Bhagabatpur 
island, major portions of Lothian island together 
with some of the fringing mangrove forests of 
Indian Sundarbans with adjoining agricultural 
and settlement areas extending between 21° 56' 
to 21° 57' N and 88° 22' to 88° 24’ E was selected 
as the study area (Figure 1).

Figure 1 Index map of the study area and false colour composite of the AVIRIS-NG data
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Data used

Airborne Visible and InfraRed Imaging 
Spectrometer–Next Generation (AVIRIS-NG) 
airborne campaign data, i.e. a joint collaboration 
of Jet Propulsion Laboratory (JPL), NASA and 
Indian Space Research Organisation (ISRO), 
were used in the present study. There were 
425 narrow continuous spectral bands in the 
visible and near infrared (VNIR) and shortwave 
infrared (SWIR) regions in the range of 376–
2500 nm at 5 nm interval with high signal-to-
noise ratio (SNR) with accuracy of 95% having 
field of view 34o and instantaneous field of view 
of 1mrad. The scene characteristics of AVIRIS-
NG image over Sundarbans area are listed in 
Table 1. 
 Ground truth data regarding the geographic 
distribution of different mangrove species in the 
study area were collected along with published 
maps and reports on the distribution of mangrove 
species in the Indian part of the Sundarbans (Ajai 
et al. 2012, Nayak et al. 2003).

METHODOLOGY

Removal of bad bands and data reduction

All the bands were visually examined and a list 
of bad bands was prepared. AVIRIS-NG data 
had 425 bands, of which bad bands (which 
included no information bands, higher noise 

level bands and water vapour absorption bands) 
were removed. Reflectance values of random 
pixels of regions of interests (ROIs) for all the 
bands (excluding the bad bands) were subjected 
to factor analysis which attempts to identify 
underlying variables/factors (here bands) that 
explain the pattern of correlations within a set 
of observed variables. The method used for 
extraction was Principal Component Analysis 
(PCA) following Richards and Jia (2006). The 
technique adopted for rotation was Varimax 
method with Kaiser Normalization (SPSS 13.0, 
2004). Only Eigenvalues over 1 were extracted 
and principal components were analysed on 
the basis of a correlation matrix. The selection 
of uncorrelated wavelengths was done using 
factor analysis tool in SPSS software. The bands 
registering correlation coefficients ≥ 0.8 were 
considered for further analysis.

Computation of pixel-based spectral indices

Five known/already published spectral or 
vegetation indices were applied on the AVIRIS-
NG reflectance image data (bands after data 
reduction). These indices are as follows:

Mangrove Probability Vegetation Index (MPVI)

MPVI (Kumar et al. 2019), a kind of spectral 
matching algorithm, was used to identify the 
image pixels that might fit in or belong to a 

Table 1 Scene characteristics of the AVIRIS-NG data

Dataset attribute Attribute value

Acquisition date 5th March 2016

North-west corner 21°56’54.77” N, 88°22’27.40” E

North-east corner 21°57’19.50” N, 88°24’22.40” E

South-west corner 21°33’26.65” N, 88°17’42.00” E

South-east corner 21°33’21.66” N, 88°19’24.42” E

Dimension 747 × 9167 × 425 [BIL]

Datum North America 1927

Target path 138

Projection UTM, Zone 45 North

Sensor type AVIRIS-NG, PHASE 1 

Spatial resolution 5 m

Radiometric resolution 14 bits

Product L2 (atmospherically corrected)
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particular mangrove forest type by calculating 
their correlation coefficients with a ‘certain 
spectrum’ of mangrove forest. The MPVI was 
calculated as given in equation (1). 

 MPVI =  

(1)

where, n = total number of bands in the image 
(270 in the present study), Bi = reflectance value 
at band i for a pixel of the reflectance image, 
and bi = reflectance value at band i for a certain 
spectrum of mangrove forest. The average 
spectrum of these pixels (average spectrum of 
ROIs taken over known mangrove forest locations 
on the reflectance image) was computed as the 
certain spectrum of mangrove forest. MPVI was 
computed using the band math tool in ENVI.

Normalized Difference Wetland Vegetation Index 
(NDWVI)

The spectral reflectance of mangrove forests is 
lower than that of terrestrial vegetation at the 
SWIR region and, thus, NDWVI was used.  Two 
bands were considered, viz. one in the SWIR 
region and the other in the green region to 
enhance the discrimination of mangrove forests 
and terrestrial vegetation (Kumar et al. 2019). 
NDWVI was computed using the band math tool 
in ENVI. In the present study, reflectance (R) 
values at 2204 nm and 556 nm were used as given 
in equation (2).

 NDWVI =  (2)

Shortwave Infrared Absorption Depth (SIAD)

This index (Kumar et al. 2019) was used to 
highlight the water absorption features of 
mangrove forests. In the present study, reflectance 
value at 1578 nm was used. Before the calculation 
of absorption depth, the continuum-removed 
reflectance was calculated. The used formula 
for SIAD calculation (equation 3) was as follows:

 SIAD = 1 – CR1578 (3)

where, CR1578 = continuum-removed value at 
1578 nm. SIAD was computed using the band 
math tool in ENVI.

Normalized Difference Infrared Index (NDII)

The NDII is a reflectance measurement that is 
sensitive to change in water content of plant 
canopies. The value of this index ranges from -1 
to 1 (Hardisky et al. 1983, Jackson et al. 2004). 
The common range for green vegetation is 0.02 
to 0.6. NDII in the present study was defined by 
equation (4).

 NDII =  (4)

where, R819 and R1649 = reflectance values of 
819 nm and 1649 nm respectively. NDII was 
computed using the band math tool in ENVI.

Atmospherically Resistant Vegetation Index (ARVI)

The ARVI is an improvement to the Normalized 
Difference Vegetation Index (NDVI) that is 
relatively unaffected by atmospheric constituents 
(e.g. aerosol). It is most useful in tropical 
regions. The common range of ARVI for green 
vegetation is 0.2 to 0.8. ARVI is defined by 
equation (5) (Kaufman & Tanre 1996).

 ARVI =  (5)

where, RBLUE, RRED and RNIR = reflectance values 
of the wavelengths in the blue, red and NIR 
regions of the spectrum respectively. ARVI 
was computed using the ARVI option of the 
vegetation index calculator under vegetation 
analysis tool in ENVI.

Identification and extraction of mangrove 
forests/mangroves

Decision Tree method was used for identification 
of mangrove vegetation. The above mentioned 
spectral/vegetation indices (MPVI, NDWVI, 
SIAD, NDII and ARVI) were used as inputs in 
the DT classifier. Figure 2 illustrates the decision 
rules for identifying mangrove forests using 
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DT and the reflectance image. The images of 
the indices were stacked for highlighting the 
mangrove forests and the DT rules for the 
identification of the forests were obtained after 
thresholding to cover all mangrove pixels. A 
mangrove mask was built using the classified 
output of DT.

Classification

In this study, three kinds of classifiers, viz. two 
types of supervised full-pixel classifiers, namely, 
Spectral Angle Mapper (SAM) and Support 
Vector Machine (SVM) and object-based classifier 
(Object-Based Image Analysis (OBIA)) were 
used. Known locations of definite floristic 
composition were used as training site pixels. 
Minimum noise fraction transformation (MNF) 
was carried out in ENVI and the first 10 MNF 
bands were used for classification.

Spectral Angle Mapper

A physically-based spectral classifier, namely, SAM 
utilises n–D angle to match pixels to reference 
spectra. Endmembers were retrieved from 
specified ROIs. The acceptable angle set was 0.1 
rad as ENVI does not classify pixels with an angle 
larger than this value.

Support Vector Machine

SVM provides high-quality classification results 
from intricate and noisy data (Chang & Lin 
2011). The SVM parameters set were kernel type 
(sigmoid), bias in kernel function (1), gamma 
in kernel function (0.005), penalty parameter 
(100), pyramid level (0) and classification 
probability threshold (0). 

Object-Based Image Classification (OBIA)

The algorithm of multi-resolution segmentation 
was  employed,  fol lowed by  super v i sed 
classification. The parameters used were: 
classification method–nearest neighbourhood, 
domain–pixel level, shape–0.1, compactness–0.5 
and scale parameter–1.5. The image was classified 
using the first 10 MNF bands. eCognition software 
was used for OBIA. 

Classification accuracy comparison

This was done using post classification confusion 
matrix with ground truth ROIs. A comparison 
was drawn amongst the classified images of SAM, 
SVM and object-based image classification. 

Figure 2 Rules for identifying mangrove forests of the study area using decision tree
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Vegetation indices for forest health 
determination

Six vegetation indices were computed for health 
determination of mangrove communities/
species/classes and these were as follows:

Enhanced Vegetation Index (EVI)

This index was developed to improve the NDVI 
by optimising the vegetation signal in Leaf Area 
Index (LAI) regions. It uses the blue reflectance 
region to correct for soil background signals and 
to reduce atmospheric influences, including 
aerosol scattering. It is most useful in LAI 
regions where the NDVI may saturate (Huete 
et al. 2002).

 EVI = 2.5 ×  

(6)

Vogelmann Red Edge Index 1 (VOG1) 

This index is a narrowband reflectance 
measurement that is sensitive to the combined 
effects of foliage chlorophyll concentration, 
canopy leaf area, and water content (Vogelmann 
et al. 1993). This vegetation index (equation 7) 
was calculated using band math tool in ENVI.

 VOG1 =  (7)

Photochemical Reflectance Index (PRI)

This index is a reflectance measurement that 
is sensitive to changes in carotenoid pigments 
(particularly xanthophyll pigments) in live 
foliage. Carotenoid pigments are indicative of 
photosynthetic light-use efficiency, or the rate of 
carbon dioxide uptake by foliage per unit energy 
absorbed. The value of this index ranges from -1 
to 1. The common range for green vegetation is 
-0.2 to 0.2. This vegetation index (equation 8) was 
calculated using band math tool in ENVI.

 PRI =  (8)

Carotenoid Reflectance Index 1 (CRI1)

Carotenoids function in light absorption 
processes in plants, as well as in protecting 
plants from the harmful effects of too much 
light. Weakening vegetation contains higher 
concentrations of carotenoids, so this index is 
one measure of stressed vegetation. Higher CRI1 
values mean greater carotenoid concentration 
relative to chlorophyll. The value of this index 
ranges from 0 to more than 15. The common 
range for green vegetation is 1 to 12. This index 
uses reflectance measurements in the visible 
spectrum to take advantage of the absorption 
signatures of stress-related pigments (Gitelson 
2002). This vegetation index (equation 9) was 
calculated using band math tool in ENVI.

 CRI1 =  (9)

Modified Chlorophyll Absorption Ratio Index 
(MCARI) 

MCARI is one of several chlorophyll absorption 
ratio indices that indicate the relative abundance 
of chlorophyll. The CARI index was simplified to 
minimise the combined effects of soil and non-
photosynthetic surfaces (equation 10) (Daughtry 
2000).

 MCARI = 

  [(R700 – R670) – 0.2(R700 – R550)] 

 (10)

 NDII was calculated as above (equation 4) 
while the ranges of the six vegetation indices 
(Table 2) were used in DT algorithm (Figure 
3) to obtain the health classes (most healthy, 
moderately healthy and less healthy/stressed) 
for the mangrove forests. 

RESULTS AND DISCUSSION

Data reduction

After removing the bad bands, 306 bands 
remained. The dimensionality of the data (306 
bands) was determined to be 4. Table 3 shows 
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Table 2 Range of values of the vegetation indices 
for identification of mangrove health

Vegetation index Range of values

EVI 0.15 to 0.69

NDII 0.057 to 0.450

PRI -0.024 to 0.026

CRI1 0.210 to 2.11

VOG1 1.118 to 1.582

MCARI 0.012 to 0.086

Figure 3 Rules for identifying health of the mangroves using decision tree

Table 3  Total variance explained

Total variance explained

PC Initial Eigenvalues Rotation sums of square loadings

Total % of variance Cumulative % Total % of variance Cumulative %

1

2

3

4

205.25

92.19

6.14

1.25

67.07

30.12

2.00

0.40

67.07

97.20

99.21

99.62

156.62

134.73

11.85

1.63

51.18

44.03

3.87

0.53

51.18

95.21

99.08

99.62

PC = principal component
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the total variance explained. The factor loadings 
and the rotation component matrix of 306 bands 
and corresponding correlation coefficients for 
four principal components (PCs) are depicted 
in Figure 4. A total of 270 bands were obtained 
after data reduction.

Figure 4 Rotation component matrix of 306 bands and corresponding 
correlation coefficients for the four principal components

Figure 5 Decision tree output exhibiting the 
mangroves in the study area

Identification and Extraction of Mangrove 
Forests/Mangroves

The DT output exhibited the mangrove forests/ 
mangroves in the study area. A mask was built 
with the DT classified output for extraction of 
the mangroves (Figure 5).

Classification

A total of 10 floristic classes (including beach 
vegetation) were used as training sites for 
classification. Classified images over the 
mangrove forests/mangroves are shown in 
Figure 6.
 The  mangrove  c l a s se s ,  wh ich  were 
characterised by the following communities/ 
species/zonations were: (1) Excoecaria agallocha—
this class was composed of pure, homogeneous 
and dense stands of Excoecaria agallocha; (2) 
Avicennia alba—this zone was composed of 
pure, homogeneous and dense stands of A. alba; 
(3) Avicennia marina—A. marina was the most 
dominant species in this class. Other mangroves 
that were also present were A. alba, Avicennia 
officinalis, Aegiceras corniculatum, Ceriops species, 
Bruguiera species, E. agallocha, Acanthus ilicifolius, 
Derris species, etc; (4) Aegialitis rotundifolia—this 
was composed of pure stands of A. rotundifolia; (5) 
Aegialitis–Excoecaria mixed—this community was 
an association of A. rotundifolia and E. agallocha 
and a mixture of both the species; (6) Phoenix–
Avicennia–Excoecaria mixed—this community 
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was an association of Phoenix, Avicennia sp. 
and E. agallocha; (7) marsh vegetation—this 
was characterised by Suaeda sp., Sesuvium sp., 
Salicornia brachiata, Acanthus ilicifolius and 
Avicennia marina (stunted growth); (8) Phoenix 
paludosa—it was composed of pure stands of 
P. paludosa; (9) saline blank— this class formed as 
a result of increase in salinity due to increase in 
elevation, probably because of deposition. Sparse 
and much stunted Avicennia sp. trees occurred in 
the saline blank zone. 
 Classification accuracy using 10 MNF bands 
showed that SVM classifier provided the best results 
(overall accuracy = 99%, Kappa coefficient (К) = 
0.99; Table 4), followed by SAM (70%, К = 0.64;           
Table 5) and lastly by OBIA (67%, К = 0.61; 
Table 6). In the classified output of SAM there 
were some black pixels that were unclassified. 
The SVM classified image showed that A. marina 
dominated the study area (Figure 7). Moreover, 
nine mangrove floristic composition classes 
were obtained (not including beach vegetation), 
of which four were at species-level (Aegialitis 
rotundifolia, A. alba, E. agallocha and P. paludosa), 
three were at community-level (A. marina, 
Aegialitis–Excoecaria mixed, Phoenix–Avicennia–
Excoecaria mixed) and the remaining classes 

were at broad eco-morphological zonation-level 
(marsh vegetation and saline blank). Based on 
both the spatial and radiometric resolutions 
of EO-1 Hyperion data, Kumar et al. (2019) 
classified the mangroves of Lothian island into 
seven classes, of which only one was at species-
level, while the rest were at community-level 
(besides the marsh vegetation and saline blank 
classes).  

Computation of vegetation indices for 
determination of forest health 

AVIRIS-NG data were used to determine the 
biochemical and biophysical parameters of 
mangrove communities and species to detect the 
most healthy, moderately health and less healthy 
or stressed mangroves. EVI and VOG1 were 
used to determine greenness while NDII gave 
moisture status of mangrove canopy. PRI was the 
representation for light-use efficiency of species 
and communities. CRI1 and MCARI showed 
the status of pigment contents in the leaves. 
Additionally, VOG1 and CRI1 measured stress 
in vegetation. Figure 8 shows the images for the 
computed indices over the mangrove forests. Cao 
et al. (2018) used PRI as one of the hyperspectral 

Figure 6 Spectral Angle Mapper, Support Vector Machine and object-based image classified outputs over 
mangrove forests
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Figure 7 Proportion of different classes in the Support Vector Machine classified output

Figure 8 Outputs for the vegetation indices over mangroves
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vegetation indices in addition to other indices 
together with spectral and textural features to 
classify the mangroves at species-level in Qiꞌao 
island, China using unmanned aerial vehicle 
hyperspectral images. However, they did not 
address the health of the mangroves in their work.

Determination of health of mangrove 
forests/mangroves

Six vegetation indices (EVI, NDII, PRI, CRI1, 
VOG1 and MCARI) were used as inputs in the 
DT classifier. The DT rules for the identification 
of the healthiness of mangrove communities 
and species were obtained after thresholding. 
The ranges of values for each of the vegetation 
indices have been tabulated in the methodology 
section. Figure 9 shows the DT output for the 
health classes in the study area. The result of 
DT algorithm indicated that the proposed 
indices could appreciably detect the health of 
the mangroves spatially. The proportions of the 
most healthy (healthiest) and less healthy or 
stressed mangroves were around 59 and 11% 
respectively. Figure 10 depicts the proportion 

Figure 9 Mangrove health classes and their 
proportions in the study area

Figure 10 Proportion of healthiness for the different classes
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of the health status for each of the mangrove 
classes (including beach vegetation) obtained 
in case of SVM. Phoenix paludosa recorded the 
highest percentage of healthy mangroves. Both 
A. marina and A. alba were found to be the least 
stressed classes, while saline blank was found to 
be the most stressed class. 

CONCLUSIONS

The present work showed that SVM outperformed 
the other two classifiers in terms of overall 
classification accuracy. Of the 10 classes, four 
classes (E. agallocha, A. alba, A. rotundifolia and 
P. paludosa) could be segregated at species-level, 
while the remaining classes were classified at 
community or zonation level. The methodology 
presented in this paper is being extended for 
other islands and localities of Indian Sundarbans 
and holds good opportunity to be applied to 
other mangrove forests for producing mangrove 
health maps using high resolution hyperspectral 
image data. 
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