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INTRODUCTION

B i o m a s s  e s t i m a t i o n  i s  i m p o r t a n t  f o r 
understanding the productivity, rate of carbon 
sequestration and cycling of nutrients in a 
particular forest ecosystem (Mahmood et al. 
2008, Mahmood 2014). Nationwide or region 
wise biomass and carbon stock assessments 
have important implications in formulating 
forest policy and management interventions, 
and preparing the government reports for 
strategic planning on the use of renewable 
forest resources (Paladinić et al. 2009). Accurate 
estimation of carbon stock is badly needed in 
developing countries to reduce emission from 
deforestation and forest degradation (REDD+) 
activities, as well as conservation of carbon stock 
in their forests. Destructive and non-destructive 
methods can be adopted to estimate forest 
biomass (Ketterings et al. 2001). Allometric 
biomass models are frequently used to estimate 

biomass of trees or forests due to their non-
destructiveness (Ketterings et al. 2001, Picard et 
al. 2012). These models can be species specific 
at local and regional levels, and multi-species at 
local, regional or biospheric (pan-tropical) scales 
(Brown et al. 1989, Ketterings et al. 2001, Chave et 
al. 2005, Chave et al. 2014). The localised species-
specific allometric models are quite robust 
compared to regional or pan-tropical models 
(Nam et al. 2016). Sometimes, it is an unrealistic 
expectation to get species-specific allometric 
models for all the tree species for biomass 
estimation of a larger area like nationwide or 
region wise (Brown 1997, Komiyama et al. 2005, 
Mahmood et al. 2016a). In these cases, a common 
wood density value, biomass expansion factor 
(BEF), form factor and stem volume data are 
used to estimate the biomass stock (FAO 2001, 
Eggleston et al. 2006, Lisboa et al. 2018). Use of 
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such method may generate large uncertainty in 
biomass estimation (Njana 2017). Such situation 
encourages to use multi-species local, regional or 
pan-tropical allometric models to estimate tree/
forest biomass (Brown et al. 1989, Komiyama 
et al. 2005, Chave et al. 2014, Nam et al. 2016).  
The use of multi species pan-tropical/generic 
allometric biomass models also yield less accurate 
estimation of tree biomass compared to using 
species and site specific models (Paul et al. 2013). 
The pan-tropical models are capable to poorly 
generalise with its polynomial function that 
results implausible relationship among biomass, 
as well as diameter and height of trees (Sileshi 
2014). Moreover, they are not able to capture the 
ecological and/or historical factors that cause 
unusual properties to trees (Nam et al. 2016, 
Maulana et al. 2016). 
	 There are 27 allometric biomass models for 
11 tree species in Bangladesh, mostly for timber 
and fuelwood species (Mahmood et al. 2016a). 
These limited number of biomass allometric 
models influence the use of pan-tropical models 
for estimating biomass of smaller and larger 
areas. The pan-tropical biomass model of 
Brown et al. (1989) and Chave et al. (2005) 
were used to estimate the biomass and carbon 
stock for plantations, natural forest, roadside 
plantations and village forest/homestead areas of 
Bangladesh (Miah et al. 2009, Ullah and Al-Amin 
2012, Rahman et al. 2015, Jamal et al. 2016). The 
tree architecture of a species varies with age, site 
and stand management intervention (Poorter et 
al. 2003). Consequently, tree biomass is found 
to vary with tree architecture (Ketterings et al. 
2001). Therefore, indiscriminate use of pan-
tropical biomass models may produce higher 
level of uncertainty in the estimation of biomass 
and carbon stock in different forest types 
and plantations of Bangladesh. Nevertheless, 
region/forest type wise multi-species common 
allometric biomass model may increase the 
accuracy in biomass estimation compared to the 
frequently used pan-tropical models (Nam et al. 
2014, Maulana et al. 2016). Thus, the present 
study hypothesised that pan-tropical biomass 
models may not be able to address the desired 
accuracy in biomass estimation for village forest 
in Bangladesh. Therefore, the study aimed i) 
to derive a multi-species common allometric 
biomass model for tree species of village forest  
using semi-destructive method and ii) to test the 
accuracy of the derived best-fit model compared 

with the frequently used pan-tropical biomass 
models. 

MATERIALS AND METHODS

Description of the study area

Village forest includes all trees grown outside 
the classified forest. It includes wet parts at the 
south and east, and drier parts at the north west 
Bangladesh (Figure 1). The village forest contains 
109,000 km2 of land area, that is about 73.58% of 
the total land of Bangladesh. This forest plays a 
vital role in the economic development of the rural 
household by supplying bulk of wood and other 
timber products for household consumption 
and industrial uses. The major tree species of 
the village forest in Bangladesh are Albizia spp. 
Aphanamixis polystachya, Artocarpus heterophyllus, 
Mangifera indica, Lannea coromandelica, Swietenia 
macrophylla and Syzygium cumini (Millate-E-
Mustafa et al. 1996, Hasanuzzaman et al. 
2014). The mean temperature of the village 
forest during winter and summer are 17 and 
32 °C respectively, while the mean annual 
rainfall and relative humidity are about 1800 
mm and 74.3% respectively (Banglapedia 
2014). The studied species of the village forest 
were Albizia procera, A. richardiana, A. saman, 
A. polystachya, A. heterophyllus, L. coromandelica, 
M. indica, S. macrophylla and S. cumini. These 
species are categorised as timber and fruit 
trees. Albizia procera, A. richardiana, A. saman, 
A. polystachya and S. macrophylla are timber 
producing species and their pruned branches 
are used as fuelwood. Lannea coromandelica is a 
medium sized tree mainly used for construction, 
while, A. heterophyllus, M. indica and S. cumini are 
medium sized fruit trees which are sometimes 
used for construction and furniture making (Das 
& Alam 2001). 

Biomass expansion factor (BEF)

Sampling of trees for biomass expansion factor 
(BEF)

A total of 42 sample trees (6 individuals from 
each species) of A. procera, A. richardiana, 
A. saman, A. heterophyllus, M. indica, S. macrophylla, 
and S. cumini was selected from the village forest 
areas of Bangladesh. The range of diameter at 
breast height (D) and total height (H) of the 
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sampled trees were 8.3 to 83.1 cm and 4.9 to 32.9 m 
respectively. 

Field and laboratory measurement

Species name and D were recorded before felling 
the sampled trees. The sampled trees were felled 
at ground level, and the stem linear length of 
each individual tree was measured and recorded 
as H. The felled trees were separated into stem, 
bigger branches (diameter > 7 cm), smaller 
branches (diameter < 7 cm) and leaves. The 
fresh weight of each part of the felled tree was 
measured separately in the field and recorded. 
	 Ten sub-samples (about 250 g) of leaves and 
smaller branches, and ten disks (2 cm thick) of 
stem and bigger branches of each species were 
taken immediately after felling the trees. These 

sub-samples were transported to the laboratory 
and oven-dried at 105 °C for seven days to get 
the fresh to oven-dry weight conversion ratio 
for each component of individual species. The 
fresh weight of each component of the individual 
sampled tree was multiplied with their respective 
conversion ratio to get component wise oven-
dry biomass. Finally, oven-dry biomass of all 
components of sampled trees were added to 
get the total oven-dry above-ground biomass 
(Mahmood et al. 2016b). The BEF of sampled 
tree was calculated from the ratio of total above-
ground biomass (TAGB) and oven-dry stem 
biomass (Taeroe et al. 2015). 

	

Figure 1     Forest areas of Bangladesh
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Models of biomass expansion factor (BEF)

The BEF of trees were found to vary with species, 
D, H and age (Sanquetta et al. 2011). Instead of 
constant or average BEF, tree size (D and H) was 
considered as an independent variable to derive 
the best-fit BEF model. Ten frequently used BEF 
models (BEF = a + b*D, BEF = a*exp (D*b), BEF 
= a*H^b, BEF = a*exp (H*b), BEF = a*(D*H)^b, 
BEF = a - (D*H)^b, BEF = a*(D/H)^b, BEF 
= a*exp (D/H)^b, BEF = exp (a-D)^b + exp 
(c)*D+1, and BEF = exp (a-D)^b + exp (c)*D/
H^2+1) were tried, where D = diameter at breast 
height, H = total height) (Sanquetta et al. 2011, 
Longuetaud et al. 2013). The best-fit BEF model 
was selected by considering the lowest values of 
Akaike information criterion (AIC) and root 
mean square error (rmse), and highest value 
of adjusted R2 (Longuetaud et al. 2013). The 
statistical software R (3.2.3) was used to derive 
BEF models, and AIC and RMSE values of all 
models. 

Allometric model of stem and total above-
ground (TAGB) biomass 

Data collection and compilation

This study used stem volume data of 817 
individuals of 9 studied tree species of village 
forest. The mean value with ranges of D, H and 
wood density (W) of the sampled tree species are 
presented in Table 1. Bangladesh Forest Research 
Institute collected the volume data from the 
village forest areas of Bangladesh and developed 

volume tables for those species (Latif and Islam 
2000). Stem biomass (kg) of individual sampled 
trees was estimated from their stem volume 
(m3) and W (kg m-3) value of the respective tree 
species, as derived by Satter et al. (1999). Finally, 
the TAGB of individual trees was estimated by 
multiplying the stem biomass and BEF of the 
respective individuals obtained from the best-fit 
BEF model (Soares & Tome 2012). 

Allometric model development and model selection

The independent variables (D, H and W) and 
dependent variables (stem biomass and TAGB) 
were transformed to natural logarithm (Ln) to 
improve the linearity and homoscedasticity. The 
total dataset (817 individuals) was divided into 
data set A and B. Data set A contained randomly 
selected 650 individuals, which was used to derive 
the allometric model. Data set B contained the 
rest of the individuals to validate the derived 
best-fit model and comparison. Eight frequently 
used pan-tropical biomass models were tested to 
derive the best-fit allometric model for TAGB 
and stem biomass. As all the tested models used 
Ln transformation, a correction factor (CF) was 
calculated for each equation to minimise the 
systematic bias during the back transformation 
to biomass value (Sprugel 1983). 
	 The model having the lowest AIC and RSE 
and the highest Akaike information criterion 
weight (AICw) and coefficient of determination 
(adjusted R2) values was considered as best-fit 
model (Sileshi 2014, Mahmood et al. 2016b). 
Kullback-Leibler discrepancy and evidence 

Table 1	 Species, respective sample number, range of diameter at breast height and their wood density

Species Family
Sample 
number

Range of diameter at 
breast height (cm)

Wood density*  
(kg m-3)

Albezia procera Fabaceae 85 6.9–70 730

Albizia richardiana Fabaceae 352 5.1–80.5 580

Albizia saman Fabaceae 61 7.8–73.2 590

Aphanamixis polystachya Meliaceae 48 5.1–43.9 620

Artocarpus heterophyllus Moraceae 64 5.9–55.4 580

Lannea coromandelica Anacardiaceae 34 8.3–38.2 495

Mengifera indica Anacardiaceae 59 7.2–62.7 540

Swietenia macrophylla Meliaceae 49 4.8–51.6 500

Syzygium cumini Myrtaceae 65 7.5–53.2 701

*Sattar et al. (1999)
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ratio were also calculated to determine the 
best-fit model between the models having 1st 
and 2nd highest AICw value (Wagenmakers 
and Farrell 2004). Test of multicollinearity 
is important for models containing identical 
multiple independent variables (Sileshi 2014). 
Multicollinear y among the independent 
variables of a model (model contained more 
than one independent variable) was tested using 
variance influential factor (VIF) according to 
Allison (1999). Models having VIF > 5 indicate 
the existence of multicollineary among the 
independent variables (Sileshi 2014). Data was 
analysed using R (3.2.3) statistical software. 

Model evaluation and comparison

The derived best-fit TAGB model was compared 
and evaluated with frequently used pan-tropical 
models of Brown (1997), Brown et al. (1989), 
Nelson et al. (1999), Chave et al. (2005), (2014), 
Djomo et al. (2010) in terms of model efficiency 
(ME) and RMSE (Mayer and Butler 1993). 
Regression between predicted biomass (Yp) (in 
the X-axis) and observed biomass (Yo) (in the 
Y-axis) were also derived for the best-fit TAGB 
model, and the studied pan-tropical models. 
Significance of slope (b = 1) and intercept (a = 
0) were tested in accordance with Piñeiro et al. 
(2008), which helped to understand graphically 
the overestimation or underestimation of each 
predicted biomass value from 1:1 line (Sileshi 
2014). 

RESULTS

Biomass expansion factor (BEF)

The best-fit BEF model for the trees was BEF = 
exp (3.8839-D)^0.1072 + exp (0.8791)*D/H^2 + 
1 with lowest RMSE (0.2580) and second lowest 
AIC (25.3735) values compared to the other 
models (Table 2). 
 
Selection of allometric model

Model 6 was derived as the best-fit TAGB allometric 
model due to its lowest AIC (98.8925) and third 
lowest RSE (0.2599) value, while model 3 was 
derived as a close competitor of model 6 with 
similar value of adjusted R2 (0.9455), and second 
lowest RSE (0.2595) and AIC (98.9687) values. 
Model 6 showed the highest AICw value (0.3526) 
compared to model 3 (0.3394). Model 4 of TAGB 
showed the highest adjusted R2 value (0.9456) and 
first lowest RSE (0.2597), among the eight tested 
models. However, model 4 showed unaccepted 
VIF value (VIF > 5) for the three independent 
variables (D, D^2, D^3) (Table 3). Kullback-
Leibler discrepancy and evidence ratio for model 
6 and model 3 were 1.03 and 0.51 respectively. 
	 Nevertheless, model 3 of stem biomass 
appeared as the best-fit allometric model with 
lowest AIC (76.4168) and RSE (0.2550), and 
highest adjusted R2 (0.9585) values. The AICw 
value of this model was 1.000, indicating the 
absence of a close competitor (Table 4). 

Table 2	 Comparison among the derived models of biomass expansion factor (BEF) for the village forest

BEF equation a b c
Adjusted 

R2 AIC RMSE

BEF = a + b*D 3.5049 -0.2573 - 0.2732 35.7229 0.3388

BEF = a*exp(D*b) 2.2125 -0.0136 - 0.2225 43.1005 0.3504

BEF = a*H^b 5.8501 -0.5375 - 0.5593 19.2532 0.2638

BEF = a*exp(H*b) 2.7127 -0.0445 - 0.4668 27.2545 0.2902

BEF = a*(D*H)^b 6.0245 -0.2408 - 0.4588 27.8840 0.2923

BEF = a - (D*H)^b 3.8316 0.1430 - 0.3820 33.4559 0.3124

BEF = a*(D/H)^b 1.3904 0.1878 - -0.0231 54.6294 0.4019

BEF = a*exp(D/H)^b 1.3504 0.0778 - -0.0314 54.9680 0.4036

BEF = exp(a - D)^b + exp(c)*D + 1 12.3520 0.0724 -5.6536 0.3531 43.3777 0.3196

BEF = exp(a - D)^b + exp(c)*D/H^2 + 1 3.8839 0.1072 0.8791 0.5786 25.3735 0.2580

D = diameter at breast height (cm), H = total height (m), AIC = Akaike information criterion, RMSE = root 
mean square error, a, b and c are model coefficients
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Model evaluation and comparisn

The model efficiency values for the best-fit model 
of TAGB was 0.949, which was closest to reference 
value 1. The RMSE value was also the lowest 
compared to pan-tropical models. Nevertheless, 
among the pan-tropical models, Nelson et al. 
(1999) scored the second position (Table 5). 
The graphical presentation of 1:1 line indicated 
that pan-tropical models overestimated TAGB 
in data set B. Thus, the best-fit TAGB model 
showed higher accuracy than pan-tropical models 
(Figure 2). 

DISCUSSION

Development of allometric biomass models and 
selection of best-fit model require extensive 
field and laboratory work, statistical analysis, 
critical analysis on model selection criteria 
and model validation process (Sileshi 2014, 
Picard et al. 2015, Mahmood et al. 2019a). The 
selection of appropriate model is a critical task 
that can considerably reduce the bias in biomass 
estimation (Nam et al. 2016). Models 6 and 
3 are the best-fit models for TAGB and stem 
biomass (Tables 3 and 4). Models with single 
independent variable such as D have shown 
lower efficiency in terms of model selection 
criterias, but higher efficiency compared to 
models with multiple independent variables (D, 
H and W). Inclusion of multiple independent 
variables in a common biomass model is able 
to capture more variabilities from diameter, 
height and species-specific wood density of the 
sampled trees (Chave et al. 2005, 2014). Both, 
the best-fit models of TAGB and stem biomass, 
have included W as an independent variable 
along with D and H. Thus, W is an important 
independent variable for multi species common 
biomass models, to capture the variabilities 
among the species (Brown et al. 1989, Nelson 
et al. 1999, Chave et al. 2005, Chave et al. 2014, 
Njana et al. 2016, Mahmood et al. 2019b). The 
wood density values that were used for the 
development of allometric biomass models were 
not measured for this study. This study used 
wood density values from the database of Sattar 
et al. (1999). The database contained heartwood 
density of different tree species in Bangladesh. 
The wood density of a species varies with age 
and position of wood samples, such as base to 
top of the stem and center to periphery of a 

stem disk (Picard et al. 2015). These variations 
in wood density were not considered during 
the development of these allometric biomass 
models, which was one of the limitation of this 
study. Therefore, the use of wood density values 
from a database for a particular tree species may 
yield bias during the estimation of tree or forest 
biomass (Manuri et al. 2014). 
	 Allometric biomass models can be developed 
by adopting direct and indirect methods. Direct 
method involves felling of trees, while indirect 
method includes volume measurement of 
stem, use of wood density and BEF (Picard et 
al. 2015). The allometric models derived from 
direct method are more accurate compared 
to the models derived from indirect method 
(Ketterings et al. 2001, Njana 2017). The 
accuracy level of allometric models of indirect 
method varies with nature of independent 
parameters. Indirect models with species-
specific wood density and predicted tree specific 
BEF have shown higher accuracy in biomass 
estimation compared to models containing 
fixed wood density and mean BEF (Njana 
2017). Considering the independent parameters 
(species-specific wood density and predicted 
tree specific BEF) involved, the current derived 
allometric models may perform better than 
other types. 
	 In a comparison, TAGB of sampled trees in 
data set B were estimated using the best-fit model 
and frequently used pan-tropical allometric 
models, which showed wide variation in biomass 
estimation. The graphical presentation of 
1:1 line indicated that pan-tropical models 
generated a wide range of overestimation 
compared to the observed biomass (Figure 2). 
Similarly, wide variation in biomass estimation 
was observed during comparison of hill and 
sal forests in Bangladesh, peat swamp forest in 
Indonesia, Papua tropical forest in Indonesia, 
evergreen forest in Vietnam, natural forest in 
Colombia, Kalimantan forest in Indonesia and 
Sarawak forest in Malaysia (Basuki et al. 2009, 
Kenzo et al. 2009, Alvarez et al. 2012, Manuri 
et al. 2014, Nam et al. 2016, Maulana et al. 
2016, Mahmood et al. 2019 a, b). This indicated 
that frequently used pan-tropical biomass 
models have shown poor prediction capacity. 
Differences in diameter and height range, 
range of wood density, tree species and their 
architecture, forest types and their management 
practices, site quality and the climatic condition 
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may influence the efficiency of the compared 
pan-tropical models (Brown 1989, 1997, Nelson 
et al. 1999, Chave et al. 2005, Djomo et al. 2010, 
Chave et al. 2014). Therefore, one should 
check the variation generated by pan-tropical 
allometric biomass models before estimating the 
biomass of a particular forest or species (Alvarez 
et al. 2012, Nam et al. 2016, Mahmood et al. 
2019 a, b). Unfortunately, such comparison for 
pan-tropical models is rare (Nam et al. 2016). 
However, the context provided by this study 
and the results presented herein demonstrated 
that the currently derived allometric biomass 
model could accurately estimate the TAGB 
of the studied species in the village forest of 
Bangladesh, compared to frequently use pan-
tropical models. 

CONCLUSION

Pan-tropical models are frequently used to 
estimate biomass of trees or forests without 
considering the species, forest types, climatic 
condition, statistical uncertainty and level of 
variation or error, which may produce uncertainty 
in biomass estimation. This study demonstrated 
that a model with diameter and wood density was 
more efficient in biomass estimation compared 
to others. Models with multiple variables are 
able to capture the variabilities among the 
species. The derived best-fit TAGB model (Ln 
(TAGB) = -6.0325+1.9715*Ln(D)+0.8193*L
n(W)) accurately estimated the tree biomass 
of the village forest in Bangladesh, compared 
to the frequently used pan-tropical allometric 

Figure 2	 Regression between observed and predicted values of the best-fit common TAGB model of 
the village zone and frequently used pan-tropical and regional TAGB models; solid line shows 
regression and broken line shows the significance of slope (b = 1) and intercept (a = 0)
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models. Thus, caution need to be taken when 
using pan-tropical allometric models for the 
biomass estimation of trees and forest of a 
particular area. 
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