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KAMZIAH, A. K., AHMAD, M. I. & AHMAD ZUHAIDI, Y. 2000. Modelling diameter
distribution in even-aged and uneven-aged forest stands. Five distributions, Weibull,
gamma, Johnson S, log normal and generalised normal, are compared in terms of
their ability to model diameter data in even-aged and uneven-aged forest stands.
Moments ratio diagrams of various statistical distributions are applied as a measure of
the flexibility of the distribution in regard to their changes in shape. Some of the
strengths and weaknesses of the distributions that have been used for describing
diameter distributions in even-aged and uneven-aged stands are discussed. Data were
obtained from 16 uneven-aged stands of mixed species located at Bukit Lagong Forest
Reserve, Kepong, Selangor, and 9 even-aged stands of Acacia mangium species located
at Kemasul Forest Reserve, Pahang. All the stands were from plantations and the ages
ranged from 5 to 22y.

Key words: Diameter distribution - maximum likelihood estimators - probability
density function - loglikelihood function

KAMZIAH, A. K., AHMAD, M. I. & AHMAD ZUHAIDI, Y. 2000. Model taburan garis
pusat bagi dirian hutan seumur dan tak seumnur. Lima taburan, Weibull, gamma,
Johnson S, lognormal dan normal teritlak dibandingkan dari segi keupayaannya
untuk membentuk model data garis pusat bagi dirian hutan seumur dan tak seumur.
Gambarajah nisbah momen daripada pelbagai taburan statistik digunakan sebagai
satu ukuran kelenturan berhubung dengan perubahan dalam bentuk sesebuah
taburan itu. Beberapa kekuatan dan kelemahan bagi taburan-taburan yang pernah
digunakan untuk menggambarkan taburan garis pusat bagi dirian seumur dan tak
seumur ini dibincangkan. Data garis pusat diperoleh daripada 16 dirian seumur
dan tak seumur daripada pelbagai spesies terletak di Hutan Simpan Bukit Lagong,
Kepong, Selangor dan 9 dirian seumur daripada spesies Acacia mangium terletak
di Hutan Simpan Kemasul, Pahang. Kesemua dirian tersebut merupakan hutan
ladang dan umurnya dalam lingkungan 5 hingga 22 tahun.
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Introduction

The distribution of diameter is the most simple factor to describe the properties
of forest stands. Other variables such as volume, value, conversion cost, and
product specifications are well correlated with diameter. Its relationship to site,
stand composition, age and density is often valuable for economic and biological
purposes. This quantitative information is helpful for managing forestlands in
a sustainable manner.

For many years researchers have put considerable interest on describing
the frequency distribution of diameter measurements in forest stands using
probability density functions and have employed various distributions for both
even-aged and mixed-aged stands with varying degrees of success (Zohrer 1972,
Bailey & Dell 1973 and references therein, Clutter & Allison 1974).

According to Meyer and Stevenson (1943), in 1898 de Liocourt constructed a
model based on the geometric progression for diameter distributions from
uneven-aged forests and later on, Meyer and Stevenson applied this general
model, the exponential distribution, to a forest of mixed species in Pennsylvania
(Bailey & Dell 1973). Bailey and Dell (1973) note that other systems and distri-
butions which broaden the consideration to include mound shape are Gram-
Charlierseries (Meyer 1930), the Pearl-Reed growth curve (Osborne & Schumacher
1935, Nelson 1964), the gamma distribution (Nelson 1964), and the three-
parameter logarithmic-normal (Bliss & Reinker 1964). The beta distribution,
which is essentially a reparameterisation of Pearson’s more general Type 1, was
applied to diameter distributions by Clutter and Bennett (1965) and later on
McGee and Della-Bianca (1967), and Lenhart and Clutter (1971) subsequently
developed the applications of models based on the beta distribution (Bailey &
Dell 1973).

The main problem in fitting distributions has been the choice of statistical
distribution function for describing the probabilities of interest (Hafley &
Schreuder 1977). Hafley and Schreuder (1977) indicate that the criteria for
choosing a distribution appear to be that the distribution be relatively simple to
fit in terms of parameter estimation, sufficiently flexible to fit a relatively broad
spectrum of shapes, lend itself easily to simple integration techniques for estimating
proportions in various size classes, and fit any given set of observations well.

The probability density function should cover shapes of either positive or
negative skewness. Bailey and Dell (1973) emphasised that any constant in the
model should be easily related to shape and location features of the distribution
and thus vary in a consistent manner with stand characteristics. The function
should provide a promising base for advanced development and should also be
easily fitted to observed data using parameter estimators that have desirable
statistical properties.

An application of this method is the development of growth and yield systems.
Diameter growth functions can be developed by applying the same form of
probability density function (pdf) to the diameter distribution from the beginning
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until the end of a growing period (Kamziah 1998). Yield model can be derived
based on approximation of a diameter distribution by a probability function.
Numerous growth and yield systems based on the probability density function
have since been developed (Smalley & Bailey 1974, Feduccia ¢t al. 1979, Matney
& Sullivan 1982, Baldwin & Feduccia 1987, Brooks et al. 1992). Hafley and
Schreuder (1997) found that the Johnson S, distribution is appropriate for both
diameter and height, and was the driving force in ayield prediction model (Hafley
et al. 1982).

Statistical distribution

Studies have been conducted to describe the frequency distribution of diameter
measurements in forest stands using probability density function. In this study,
we compare five distributions, Weibull, gamma, Johnson S,, lognormal and
generalised normal, in terms of their ability to model diameter data in even-aged
and uneven-aged forests stands.

The probability density functions, likelihood functions and the loglikelihood
functions for the five distributions are given as follows.

Weibull distribution

Probability distribution function:

c-1
-a
f(x)= C(—X—C)— exp [—((x—a)/b)c]]
0<x<e , 0<asx , b,c>0
where

a = location parameter

b = scale parameter

¢ = shape parameter

Likelihood function:

Cn H(Xi _a)c—l
L — i=1
bnc

exp Z;:[—((xi ——a)/b)‘]
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Loglikelihood function:

Log(L)=nlogc—-nclogb+(c-1) Z log (x, —a)

1 “1 c

i=l

Gamma distribution

Probability density function:

o5 [of 55

0<x<e , 0<a<x , b,c>0
a = location parameter
b = scale parameter
¢ = shape parameter
where

1 1 139 571
7 3 -_ 2 +..
12¢ 288c°  51840c®  2488320c

_1 1
T(c)~e© c(C 2 (2n)2 [l +—t
(c> 0 1n | arg ¢ |<1t)

Likelihood function:

LH(;J {exp z[(_b_m Sy
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Loglikelihood function:

Log (L) =(c-1) i log(xib_a]—i (Xi_aj

i=1

nlogb-nlogl (c).

Johnson SB distribution

The Johnson S;distribution has four parameters which are the lower limit, e,
the upper limit, 1 and two shape parameters, g and d. For the purpose of this
study, we assume e =0 and therefore the distribution becomes a three-parameter
distribution bounded by 1 from above.

Probability density function:

8 A 1 x I
f(x)—ﬂ O —%) exp { 2[Y+SIH(K—XII}

O0<x<A, 08>0, -oocy>o0 | A>0

where y+8ln(lx )=Zx ~ N(0,1)

A = scale parameter
¥, 8 = shape parameters

Likelihood function:
8" AR

2
n| X,

L= — = exp . ——{y+dln{ ‘ H
@” b -x2)  F| 2 A-x

1

i=1
Loglikelihood function:

Log(L)=nlogd —g log (2n)+nlog A

i=l1 i=1

2
n o 12 X,
_ Zlog(lxi—xi)—EZ{y+81n[x ]:i
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Lognormal distribution

Probability density function:

£(x) = : exp {‘ [(log (x-2)- b)]z}

(x—a) ¢ (2n)” 2¢?

0<x<e , 0f£asx , b,c>0
a = location parameter
b = scale parameter
¢ = shape parameter

Likelihood function:

: 2
L=— 1 — 2 exp{-l{bg(xi _a)*b} }
]_[(xi —a)c" (ZTt)A i=l 2 ¢

i=1

Loglikelihood function:

n
Log(L)=- ) log(x, ~a) - —glog(Zn) - nlogc

n flog(x, -a)—b
ey

_ 1
2 i=1 C

Generalised normal distribution

Probability density function:
1
f(x) = (2n)5 b exp (ky —y2/2)

~k'In{l-k(x-a)/b} , k=0

where y =

(x—a)/b , k=0
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and a+b/k<x<e if k<O
-0 <X <00 if k=0
-o<x<a+b/k if k>0
a = location parameter

b

1

scale parameter

Likelihood function:

-n n
L=(27r)/2 b™ exp Z(kyi—y;‘)’/2)

i=1

Loglikelihood function:

Log(L) = -—glog(Zn) ~nlogb+ Y (ky —y?/2)

i=1

The details of the prediction of parameters of the distributions were described
by Kamziah (1998).

Skewness and kurtosis

The skewness coefficient, \/ﬁl, and kurtosis coefficient, Bg, of various statistical
distribution measure the flexibility of the distribution in regard to their
changes in shape.

Here

3
\/E=u3/u24 . By =pg/ud

where = [7 [x - E(x)]* f(x) dx

and f(x) is the probability density function of the random variable x. Skewness,
or symmetry, is defined as a departure from symmetry about the mean where
negative values indicate a distribution with a long tail to the left and positive
values a long tail to the right. Kurtosis is generally considered to be a relative
measure of the flatness or peakness of a distribution; the larger the value of [32,
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the more peaked is the distribution. The value of B, or B, does not itself uniquely
define a distribution. It is helpful in identifying distributions that should not
be fit.

The B,-B, space is used to demonstrate the range of skewness and kurtosis
covered by various statistical distribution (Johnson & Kotz 1970). The graph
provides great information in considering the strengths and weaknesses of the
distribution. Figure 1 presents the b —b, (the moment estimators of B,—B,) space
for statistical distributions that have been suggested for describing diameter
distribution. The ‘impossible region’ in the graph indicates that the combinations
of B,and B, are mathematically impossible. By tradition we choose to present the
ordinate scale upside down. The b,-b, space presented simply spans the segment
of the space appropriate to our discussion. Such a graph could suggest which
distribution fits a set of data based on sample estimates of B, and £,.

L] .
0.14 5 /
I
I
K|
0.04 y
[
L

0.02 -

Figure 1. The location of the estimates b, and b, for the diameter measurements
from the 25 data sets of Table 1. (1:impossible region, 2 : Weibull
distribution line, 3 : gamma distribution line, 4 : lognormal distribution
line)

The gamma, lognormal and Weibull are represented by lines in the b-b,
space, demonstrating their capability to assume a variety of shapes. Hosking
(1986) verified that the lognormal distribution is a special case of the
generalised normal distribution. The generalised normal includes both log
normal distributions with positive skewness and a lower bound (k<0), and
lognormal distributions with negative skewness and an upper bound (k > 0). It
also includes the normal distribution as a special case (k =0).
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These lines fall rather close to each other; hence, it explains why sets of data
can often be fitted equally well or equally poorly by either of these distributions.
Their locations also explain why the Weibull distribution has often been found to
give a “better fit” to diameter data than either the gamma or lognormal. A further
distinction between these three distributions is their ability to represent different
types of skewness. The lognormal and gamma distributions are limited to shapes
that have positive skewness, while the Weibull distribution has the ability to
describe both positive and negative skewness.

The Johnson S, distribution (Johnson 1949) span the ,-B, space based on
transformation of a standard normal variate. The distribution covers the region
above the lognormal line; therefore, it provides more flexibility in skewness and
kurtosis (Hafley & Schreuder 1977).

The moment estimators of Y B, and B,are

X -%)

b = 3
\/—l [Z(Xf_i)z}é

and
b — i Z(Xl _§)4

eI [Z(Xi —i)2]2

Application

We compare the five distributions in terms of how well they fit diameter data
obtained from 16 uneven-aged stands of mixed species located at Bukit Lagong
Forest Research, Kepong, Selangor, and 9 even-aged stands of Acacia mangium
species located at Kemasul Forest Reserve, Pahang. The stands were all
plantations and the ages ranged from 2to 22 y. Table 1 shows the summary
of the stand data.

A summary of the quality of fit based on the log of the likelihood for each
data setis presented in Table 2. The log of the likelihood is used because it
is much easier to compute than the likelihood and it provides the same results
for ranking purposes. The purpose of the ranking is to identify one or more
distributions which would perform well over a variety of empirical data sets
(Hafley & Schreuder 1977).

Results

Table 1 presents estimates of ‘fﬂ, and f, and descriptive information regarding the
data sets. About 37% of the diameter distributions are negatively skewed. The
range of the skewness is from-0.114t0 0.404 and the kurtosis ranges from 1.64
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to 5.75. This phenomenon commonly results from differentiation of stands.
This suggests that the distribution of the diameter is far from normal.

Table 1. Species composition, age, number of trees per plot and \/b] +b,
for diameter distribution for each stand

No. Min. Max. Mean
trees diam. diam. diam.
Stand Species* Age per plot {cm) (cm) (cm) (\/b]) (by)
1 SM 15 15 25.6 38.6 31.57 0.034 2.138
2 SL 15 20 14.6 24.6 20.12 0.114 3.667
3 SL 19 30 23.0 375 30.76 0.041 1.640
4 SMF 12 25 3.7 8.4 5.56 0.145 2.160
5 SWM 19 20 20.4 41.3 28.75 0.112 2,986
6 HS 18 20 12.0 22.0 16.76 0.370 2.678
7 SL 22 64 7.5 39.5 24.96 0.071 4.645
8 MF 13 40 4.6 27.1 . 14.17 0.045 2.142
9 MU 15 20 4.4 119 7.91 0.040 2.775
10 SB 14 28 8.8 14.6 11.68 0.021 2.695
11 SBT 19 20 14.5 32.3 21.97 0.119 3.093
12 SR 17 20 10.2 24.5 17.23 -0.280 2.778
13 AS 14 20 11.5 25.3 17.30 0.106 2.570
14 SC 11 15 16.1 222 18.79 0.101 1.820
15 KM 18 15 7.4 14.1 9.31 0.404 5.748
16 DC 18 15 8.1 29.5 18.69 0.008 4.139
17 AM 5 266 6.0 22.8 16.48 0.046 3.955
18 AM 6 286 6.2 23.6 18.12 -0.033 4.197
19 AM 7 259 7.3 26.5 17.78 0.024 2.943
20 AM 8 251 6.0 20.0 20.04 -0.040 3.020
21 AM 10 431 4.0 30.4 19.69 0.019 2.782
22 AM 9 284 7.4 30.5 20.52 -0.042 4.077
23 AM 10 118 139 34.6 23.94 0.019 3.361
24 AM 9 175 18.7 29.2 23.43 0.006 3.078
25 AM 8 154 16.9 28.0 22.76 0.004 2.756

*SM : Shorea macroptera, SL : Shorea leprosula, , SMF : Shorea multiflora, SWM : Swietenia macrophylla,
HS : Hopea sangal, MF : Mesua ferrea, MU : Madhuca utilis, SB : Scorodocarpus borneensis, SBT : Shorea
bracteolata, SR : Shorea resinosa, AS: Anisoplera scaphula, SC: Shorea curtisii, KM : Koompassia
malaccensis, DC : Dyera costulate, AM : Acacia mangium.

In fitting the Johnson S, distribution, we assume the lower bound € = 0. We apply
the maximum likelihood iteration to locate the upper bounds of Johnson S,
distribution. The specified lower bound is considered realistic value and appropriate
to the ultimate use of the Johnson S, distribution without substantially affecting
the conclusion of solving the lower bound iteratively.

Table 2 shows the relative ranking of fitting statistical distributions to diameter
data. The numbers in parentheses beside the loglikelihood values show the
relative ranking of the distributions for the data sets. The rank sum for the 25
data sets for each statistical distribution is presented at the bottom of Table 2.
The results show that Johnson §; is the most consistent performer. It is the best
distribution to fit in all but three instances. The Weibull is the second best
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fitting distribution. The lognormal is generally the third best distribution to fit
the data sets. The generalised normal and gamma distributions are inferior to
the Johnson S, Weibull and lognormal distributions in terms of their performance
over the variety of stands represented.

Table 2. Log criterion and ranking ( in parentheses) of the gamma (GM), generalised
normal (GN), Johnson SB (JSB), lognormal (LN), and Weibull (WB) distributions
for diameters with the rank sum of the relative rankings for the data sets

Stand GM GN JSB LN WB
1 -32.18 (5) -28.20 (4) -19.60 (1) -25.13 (2) -26.15 (3)
2 -46.07 (5) -33.04 (3) -18.70 (1) -34.49 (4) -32.19 (2)
3 -66.76 (5) -56.84 (4) -39.50 (1) -43.32 (2) -55.68 (3)
4 -63.26 (5) -38.07 (4) -31.20 (1) -33.97 (3) -32.55 (2)
5 -48.76 (5) -41.93 (4) -30.50 (1) -32.91 (2) -38.56 (3)
6 -40.63 (5) -35.25 (4) -20.12 (1) -27.40 (2) -31.66 (3)
7 -172.96 (5) -413.60 (4) -88.00 (1) -129.80 (3) -129.48 (2)
8 -85.77 (4) -87.34 (5) -65.80 (2) -60.90 (1) -77.92 (3)
9 -43.88 (5) -32.93 (4) -17.80 (1) -28.10 (2) -29.61 (3)
10 -60.00 (5) 41,72 (4) -36.80 (1) -39.70 (3) -37.36 (2)
11 -45.35 (5) -38.46 (4) -25.10 (1) -33.20 (2) -36.04 (4)
12 -41.55 (5) -38.64 (4) -22.90 (1) -31.90 (2) -35.18 (3)
13 -41.98 (5) -36.45 (4) -27.20 (1) -30.40 (2) -34.58 (3)
14 -26.30 (5) -23.52 (4) -17.20 (1) -18.20 (2) -21.69 (3)
15 -39.03 (5) -23.21 (4) -12.30 (1) -19.10 (2) -20.32 (3)
16 -32.72 (5) -29.82 (4) -19.20 (1) -23.60 (2) -28.07 (3)
17 -1092.55 (5) -465.34 (2) -307.70 (1) -531.48 (4) -485.52 (3)
18 -879.04 (5) -528.60 (2) -328.95 (1) -565.15 (3) -639.85 (4)
19 -973.97 (5) -512.45 (3) -361.39 (1) -889.23 (4) -500.56 (2)
20 -1042.88 (5) -423.93 (1) -696.00 (4) -481.52 (2) -492.82 (3)
21 -1139.25 (5) -750.97 (2) -643.78 (1) -1145.11 (5) -990.78 (3)
22 638.28 (4) -494.30 (2) -365.47 (1) -807.35 (5) 546.04 (3)
23 -363.02 (5) -222.99 (2) -232.68 (3) -304.15 (4) -216.53 (1)
24 -596.88 (5) -314.30 (3) -217.99 (1) -321.56 (4) -284.01 (2)
25 -337.58 (5) -276.41 (3) -168.90 (1) -283.22 (4) -250.75 (2)
Rank
sum 122 84 31 71 67

Figure 1 shows that the observations appear to be consistent with the impli-
cations on the plot of the b, and b, points. Most of the points are not close
to the lines associated with the Weibull, gamma, and lognormal distributions.
The sign of b, is inappropriate to those points which fall close to these lines.
Regardless of the sign of ‘jbv the gamma distribution is always the poorest
performing distribution. However, the calculation of b, and b, is insufficient for
selecting the best distribution for a given data set. This is obvious as since the
region of the B, and B, space spanned by the S, distribution and the lognormal,
gamma and Weibull lines overlap, calculated values of b, and b, will not identify
which of these two distributions will give better fit to a given data set.
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Conclusion

The relative ranking of the data set shows that each of the statistical distributions
considered for fitting a variety of empirical data sets has strengths and weaknesses.
In this study the Johnson S, distribution demonstrates a relative stability across
the data sets. Flexibility of the Johnson S; distribution is considered in terms of
its ability to fit empirical data sets and relative simplicity to apply through the
method of maximum likelihood estimator even though the upper bound of the
data set is not known.

The statistical procedures used to describe the diameter distribution can
further be applied for the development of growth and yield models. The esti-
mation of parameters based on diameter will lead to prediction of parameters of
the distribution related to stand characteristics such as age, average height, total
basal area per hectare and number of trees per unit area by developing regression
equations. Hence, a growth model could assist forest researchers and managers
to examine the alternative cutting limits and likely outcomes, and thus to make
their decisions objectively.
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