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INTRODUCTION

The disturbances caused by strong wind play 
a major role in forest ecosystems by changing 
the stand dynamics. These disturbances cause 
direct damage to trees, loss of timber resources 
in terms of reduction in carbon storage, and 
loss of other ecosystem services (Gardiner et al. 
2013). Climate change is expected to cause a 
higher frequency of severe wind disturbances in 
forest ecosystems on a global scale (Seidl et al. 
2016). The high-resolution climate projections 
for Vietnam predicted a decrease in tropical 
cyclones over the country from 2045, but with 
a larger proportion of high-speed wind events 
(Nguyen et al. 2014). Hence, forest trees will 
experience higher wind speed pressure and wind 
damage may occur more frequently. Therefore, 
it is necessary to establish a damage risk model 
to develop effective management strategies for 
sustainable forest management. No studies have 
modeled wind risk in Acacia hybrid plantation 
forests under actual strong wind conditions. 
In Vietnam, Acacia hybrid species are the 

predominant plantation species with a total area 
of 1.0 Mha (Do 2020). Acacia plantation areas also 
have experienced significant impacts from high-
speed winds, especially in central Vietnam. For 
example, in 2017, Acacia plantations accounted 
for nearly 61% of the total plantation forest area 
damaged by Typhoon Doksuri in Quang Tri, 
reported by the Forest Protection Department 
(FPD).
 The models that aim to predict wind damage 
in forests can be categorised as empirical, 
statistical and mechanistic models (Kamimura 
et al. 2007). Empirical and statistical models are 
commonly used to help determine key factors 
of wind damage based on observation datasets 
and provide accurate wind risk assessment 
in different regions through one or more 
high-wind-speed events or temporary plots 
(Kamimura et al. 2013, Mitchell 2013, Chirici et 
al. 2018). These models can predict the risk of 
damage on individual trees, with high accuracy, 
during high-wind-speed events (Valinger & 
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Fridman 2011). To date, however, finding a 
powerful and accurate model to assess the risk 
of wind damage is challenging because of the 
complex interactions of factors affecting tree 
stability, and the lack of wind profiles at different 
spatial scales from stand to landscape.
 The probability of wind damage to a tree is 
affected by the interaction between the tree’s 
vulnerability and wind pressure. To date, few 
studies have used airflow models for statistical 
analysis of wind disturbance, although some 
mechanistic models have integrated wind 
profile parameters. In Europe, for example, 
mechanistic models such as GALES and HWIND 
have been developed to analyse wind hazard 
risks, with an airflow model of Wind Atlas and 
Application Programme (WAsP) (Peltola et al. 
1997, Gardiner & Quine 2000). However, it is 
difficult to use WAsP for steep and complex 
terrain because WAsP uses a linear model to 
calculate wind profiles, thus having low accuracy 
on complex topography. Kamimura et al. (2007) 
claimed that considering both the terrain and 
unique topographic effects on wind conditions 
is required in any analysis of wind disturbance in 
a complex terrain. Computational aerodynamic 
models such as RIAM-COMPACT, adapted 
for complex topography at mesoscale could 
be effective in understanding wind damage 
(Uchida 2008). Therefore, linking them to 
statistical models is a useful initiative to improve 
assessment of wind damage risk in mountainous 
areas, and to develop a wind hazard model. 
 In this study, analysis of data on regional scale 
wind damage in a Acacia hybrid plantation forest 
under FPD’s management is presented using 
an empirical method. The main objectives of 
the study were: i) to examine the efficiency of 
using a fluid model in complex topography in 
evaluating wind hazard model by identifying the 
most important predictor variables for statistical 
modeling of the probability of wind risk, in a 
case study in Quang Tri, Vietnam; and ii) to 
provide a GIS-based area-wide quantification 
of the probable risk of wind damage for forest 
managers. The research on integrated GIS, 
aerodynamics and satellite image analysis to 
establish a logistic model to clarify affected 
factors, and to determine wind hazard for A. 
hybrid plantations is the first such approach 
in Vietnam. The wind damage probability 
is intended to support decision making in 
silviculture.

MATERIALS AND METHODS

Research site

The research was conducted in Quang Tri 
Province, Vietnam (16° 51' N, 106° 51' E), in 
which, the terrain becomes increasingly complex 
from coastal line to the Truong Son Mountains. 
This area is influenced by subtropical monsoon 
climate, with mean annual precipitation of 1500–
2200 mm, and mean annual temperature of 22–
28 °C. The area of interest measures 10 × 10 km2 
with an elevation ranging from 37–550 m (Figure 
1). Among its various soil types, yellow soil 
(Ferralsols - F) is the dominant one. The Acacia 
hybrid plantation forests, owned by FPD and the 
local government for environmental protection 
and wood production, covers an area of 4780 ha 
(~44% of total land cover). The study area is also 
the most affected are by typhoons and tropical 
storms (5–8 per annum) in Vietnam (Wang et 
al. 2017).

Data sources

Two types of sample plots were used to estimate 
the tree height of Acacia plantations: i) Acacia 
hybrid plots (95 sample plots) inherited from the 
Forest Inventory and Planning Institute (FIPI) 
in 2017, and ii) survey data (15 sample plots) 
collected from October to November 2017 after 
Typhoon Doksuri hit. Total number of trees in 
each sample plot is 460–2100 trees with a sample 
size of 1000 m2. Both data types consist of tree 
height (H), stem diameter at breast height (DBH, 
1.3 m), stand age (A) and geographic coordinate 
of the sample plot for each stand.
 A spatial dataset with soil type (soil name) and 
depth was obtained from the National Institute of 
Agricultural Planning and Projection (NIAPP), 
Ministry of Agriculture and Rural Development 
of Vietnam. This dataset was stored in the ArcGIS 
software (ESRI 2003). 
 For analysis of wind conditions, a raster 
Digital Elevation Model (DEM), provided by 
FIPI, was used with a pixel size of 30×30 m 
resolution. Variables describing the topographic 
characteristics were calculated using ArcGIS 
Spatial Analyst extension, including slope (Slo), 
elevation (Elv), azimuth (Az) and the concavity 
and convexity of a pixel.
 LANDSAT-8 was selected to classify damage 
or undamaged Acacia hybrid plantation forest 
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in the research site. These images, with GeoTIFF 
output format, were from Universal Transverse 
Mercator map projection and World Geodetic 
System 84 datum (https://earthexplorer.usgs.
gov/). Two satellite images, LC08_L1TP_12504
8_20170606_20170616_01_T1 (before typhoon 
occurred) and LC08_L1TP_125048_20180422_
20180502_01_T1 (after typhoon occurred) were 
used (Appendix 1).
 In this study, classification as damaged or 
undamaged forest stands were carried out by 
interviewing the FPD staff, government staff and 
the local people. In total, 76 forest patches were 
defined in July 2018, in which, a damaged area 
was considered detected when trees in forest 
patches were broken, knocked over or bent by 
the storm. Minimum proportion of damaged 
trees, based on the interview, was estimated as 
10 percent of a stand.

Data processing

As shown in Figure 2, there were four main data 
processing: i) tree height estimation to predict 
the dominant height (Hdom) (the mean of the 
highest 20% of trees in sample plots) of Acacia 
hybrid stands, ii) prediction of wind properties via 
RIAM-COMPACT, iii) estimation of wind damage 
locations by classifying LANDSAT-8 images, and 

iv) establishing wind risk model for Acacia hybrid 
plantations. The pulling experiment was also 
conducted for Acacia hybrid to investigate soil 
effect on the stability of the species planted in 
different soil types. 

Tree height estimation

To simulate the risk of wind damage to a stand, 
the target model required information such as H, 
DBH and A. However, the size parameters (e.g. 
H, DBH) in every patch were not available on the 
research site. Therefore, the tree height of Acacia 
hybrid plantations were predicted. The process 
was divided into two steps: i) estimation of tree 
height based on the growth curve of Acacia hybrid 
for the whole of Quang Tri, and ii) definition of 
a site index (SI) to investigate the difference in 
site productivity of a smaller region. In the first 
process, stand height for Acacia plantations was 
estimated using a tree height growth curve based 
on the 110 sample plots. The Hdom was used as 
the response variable. The dataset was divided 
into two groups: a training dataset (70% of total 
sample plots) and an evaluation dataset (30% of 
total sample plots) in R software (R Core Team 
2007). The stand age (based on the plantation 
year) of Acacia hybrid was from 2 to 16 years. 
Several differential equations of growth functions 
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Table 1.  Growth models used for estimating tree height based on the pairs of dominant 
height (Hdom)/age for Acacia hybrid in the research site

Designation Equation Free parameters

Lunqdqvist-Korf (1.1) H = a.e-b/T^c a, b, c

Shumacher (1.2) H = a.e-b.T^c a, b, c

Chapman-Richards (1.31) H = a.(1-e-bT)1/(1-c)

(1.32) H = a.(1-e-bT)c

a, b
c: shape of parameter

Gompertz (1.4) H = a.e-b.exp(-cT) a, b, c

Hossfield (1.5) H = a, b, c

H = tree height, a = the asymptote of dominant height (H, m), T = stand age (tree age)

were used, as demonstrated in Table 1. Bayesian 
theory was applied with the ‘rstan’ package in R 
to estimate the parameters of these non-linear 
equations. The best performance equation 
was selected based on the Watanabe-Akaike 
information criterion (WAIC), mean residual 
(MERS), residual mean of squares (RMS) and 
accuracy.
 In the second process, the SI for each specific 
stand was calculated directly, based on Hdom 
associated with a baseline age (A0). All pairs of 
Hdom/A of all sites were selected together and 

defined the function Hd = f(A), where A is the age 
of a forest. Therefore, SI was calculated as follows:

 SI = Hdom × f(A0) / f(Ai) (1)

where SI is site index, f(x) is the function for 
estimating tree height at age x, A0 is the baseline 
age, and Ai is tree age of a stand. 
 Then, SI was estimated by investigating the 
relationship between SI and soil properties (soil 
type, soil depth), and site conditions using a 
generalised linear model (GLM) as follows:

Figure 2 The flowchart describes data processing of the study
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SI ~ a × Sty + b × Sde + c × Slo + d × Elv + e × Az
(2)

where SI = site index, Sty = soil type, Sde = soild 
depth, Slo = slope, Elv = elevation and Az = 
azimuth.
 The best model was selected based on the 
lowest value of the Akaike information criterion 
(AIC) with decreasing explanatory variables 
(McGullagh & Nelder 1989). From the SI 
(equation 2), the Hdom was calculated for the 
stands in the research site (equation 1), with 
Ai and A0. Since there was no database for tree 
cover, e.g. Digital Surface Model (DSM), the 
DSM was estimated by combining the DEM and 
vegetation height of all land-use types. Overlay 
tools in ArcGIS were used for this process. Tree 
heights of Acacia plantations were calculated 
using equation 1, and other heights of land-use 
and vegetation types were assumed based on the 
measurement of height for each type, as shown 
in Appendix 2.

Prediction of wind properties 

Wind speed and wind turbulence were estimated 
using RIAM-COMPACT (Uchida 2008). The 
software allows simulation of strong airflow 
conditions resulting from complex terrain at 
different levels, using the Large-Eddy Simulation 
technique. RIAM-COMPACT was used to calculate 
the mean wind velocity and standard deviation of 
wind velocity (δ) at an approximate height of 10 
and 15 m above canopy, respectively, using 30 × 
30 m grid data from DSM topography. A power 
law of 1/7 of wind profile, an initial wind speed 
of 10 ms-1,

 and a buffer zone with a distance of 2.5 
km were used as parameters for the simulation. 
The estimated velocities for each wind direction 
were recorded as a mesh size of 100 × 100 m.

Estimation of wind damaged locations from 
satellite images

Using ArcGIS tools, areas covered by water 
bodies, road and cloudy cover were removed 
before using them for image classification. The 
normalised difference vegetation index (NDVI) 
and normalised difference soil index (NDSI) 
were used, as presented in equation 3 and 4, 
extracted from LANDSAT-8. After calculating 
the NDVI and NDSI for each image, the change 
vector of NDVI and NDSI (VCNDVI, and VCNDSI) 

were defined, in which VCNDVI is the change 
value of NDVI and VCNDSI is the change value 
of NDSI at the same location in 2017 and 2018, 
respectively (equation 5 and 6):

 NDVI = , (3)

 NDSI = , (4)

 VCNDVI = NDVI2017 − NDVI2018, (5)

 VCNDSI = NDSI2018 − NDSI2017, (6)

where NIR is band 5 (851–879 nm), RED is band 
4 (636–673 nm), SWIR is band 6 (1556–1651 nm) 
and GREEN is band 3 (533–590 nm).
 In equation 7, the changeIn1 index was used 
to enhance the difference in forest change 
compared with others, whereas the changeIn2 
index in equation 8 aimed to determine the 
direction of forest change such as deforestation 
(if changeIn2 is positive) or growth of vegetation 
including afforestation (if changeIn2 is negative). 
The two change index vectors were calculated as 
follows:

 changeIn1 = (VCNDVI
2 + VCNDSI

2)1/2, (7)

 changeIn2 = VCNDVI + VCNDSI. (8)

 The ‘randomForest’ package in R was 
used for building the classification model, 
in which damage condition (damage or no 
damage) was the response variable, while the 
predictor variables were changeIn1, changeIn2, 
VCNDVI, VCNDSI and NDVI2017. The NDVI2017 
was considered as a predictor variable because 
a large NDVI value might be sensitive to wind 
damage, for example, a stand with taller trees 
(high value of NDVI) will be more susceptible 
to wind damage than one with shorter trees. The 
selected model was evaluated through the out-of-
bagging error rate (OOB), used for assessing the 
prediction performance of Random Forest (RF), 
receiver operating characteristic curve (ROC 
curve), the area under the ROC curve (AUC) 
and overall accuracy (Breiman 1996).
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Predicting the wind damage in Acacia hybrid 
plantations

A logistic regression technique (Collett 2003) was 
used to assess the probability of wind disturbance. 
Predictor variables to predict the wind damage 
probability were calculated using ArcGIS 10.4 
Spatial Analyst extension (Table 2) and training 
models (Table 3). Due to the large difference 
in the range of their values (e.g. wind speed, 
turbulence intensity), variables were standardised 
before adding to the wind damage model.

The effect of soil type on the physical stability 
of trees for model validation

Investigation was carried out on the physical 
stability of Acacia hybrid trees in Linh Thuong, 
Quang Tri, Vietnam, referred to as soil type Fd 
and soil type Fs, located at 16° 52' N, 106° 52' E 
and 16° 53' N, 106° 54' E of the research site, 
respectively. Physical stability was measured by 
tree-pulling experiments in September 2019, to 
validate the effect of soil type on the resistance 
to wind damage, predicted in the model. A total 
of 14 and 16 trees were selected from Fd and Fs, 
respectively. The sample trees had a wide range 
of DBH from 8.9 to 22.4 cm. The maximum 
turning moment (TMmax) of trees was measured 
according to Kamimura et al. 2012.

RESULTS

Tree height estimation

Among growth models in Table 1, Chapman-
Richards (model 1.31) was the best model with 
the lowest value of WAIC (389.9) (Appendix 3). 

The other five equations were excluded because 
the posterior interval (97.5%) for the model 
parameters contained both negative and positive 
values (e.g. the posterior interval for b was −0.52 
and 707.92 in model 1.1), or had a higher WAIC 
value compared to model 1.31. The validation 
results indicated that equation 9 was a good 
model for predicting Hdom, with low values of 
MERS and RMS and high accuracy (0.18 m, 0.89 
m, and 91%, respectively). The final equation 
selected for Acacia plantations was as follows:
   
 Hdom = 23.6 × (1 – e-0.04×A)0.51 (9)

 Among the three top models used for 
predicting SI at the baseline age (A0) using 
soil and topographic parameters, model 1.10 
had the lowest AIC value, and all the predicted 
parameters were significant (p < 0.05) (Table 4). 
This model had an accuracy value of 87.9% and 
MERS of 1.03 m on the validation dataset. The 
Hdom map of Acacia plantations in the research 
site is shown in Appendix 4. The baseline age 
for the SI curve was defined as 4 years old 
(A0) because the growth rate of Acacia hybrid 
plantations was stable from 4 to 6 years old, and 
slow from 7 years old (Sein & Mitlöhner 2011). 
Prediction of SI for all forest patches depended 
on equation 1.

Estimation of wind damaged locations from 
satellite images

The model for predicting damaged or undamaged 
areas was processed only for Acacia hybrid 
plantations based on their relationship with 
five factors including changeIn1, changeIn2, 
VCNDVI, VCNDSI and NDVI2017. The results of the 

Table 2 List of predictor variables participating in the predictive model

Group factors Predictor variables Original 
classification

Source

Wind profile Wind speed (WS)
WS3 = WS + 3xδ

Continuous
Continuous

RIAM-COMPACT
RIAM-COMPACT

Turbulence intensity (δ / WS) Continuous RIAM-COMPACT

Topography Elevation (Elv) Continuous DEM

Slope (Slo) Continuous DEM

Stand attribute Standage (A) Integer NFI

Dominant height (Hdom) Continuous Prediction from SI

Soil type (Sty) Categorical NIAPP
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model showed that the selected model had an 
estimated OBB of 1.89%, with number of trees 
(ntree) set at 100, and value of variables at each 
split (mtry) of 1. The overall accuracy and kappa 
index of the predicted model were 95.83% 
and 0.88, respectively. The model had a high 
AUC value (0.96) (Figure 3b), which indicated 
good discrimination between damaged and 
undamaged points (Hosmer & Lemeshow 2000). 
Table 5 indicates a confusion matrix as a tool 
to evaluate the final RF model. Therefore, this 
model was able to predict damaged areas, and 
thus it was suitable as reference data in the next 
steps. The three highest values of both indices 

(mean decrease in accuracy and Gini index) 
were those of VCNDVI, changeIn1 and changeIn2 
(Figure 3a). The distribution of damaged and 
undamaged points in the validation set, as a result 
of image classification for Acacia hybrid in the 
research site, is shown in Appendix 5.

Wind damage probability model

The final model for predicting wind damage risk, 
selected using the lowest AIC value, included the 
variables Sty, A, Hdom, WS3, Elv and Slo (Appendix 
6). In this model, WS3 was calculated as the wind 
direction from south to north, and the height at 

Table 3. The training model form used for estimating the wind damage probability

Model Model form

1.6 logit (p) ~ a + b × A + c × Hdom + d × WS (WS3)

1.7 logit (p) ~ a + b × A + c × Hdom + d × Turbulence intensity

1.8 logit (p) ~ a + b × A + c × Hdom + d × Elv + e × Slo

1.9 logit (p) ~ a + b × A + c ×  Hdom + d × WS (WS3) +e × Turbulence intensity + 
f × Elv + g × Slo

Note: p is the probability of a stand being disturbed, a, b, c, d, e, f, g are the parameters 
of the model; Hdom – dominant height, WS = wind speed, Elv – elevation, Slo = slope 

Table 4 Estimated parameters and standard error (SE) of multiple regression models 
for the site index of 4-year-old Acacia plantations (only the models with the 
three lowest AIC values are shown)

Factors
Model 1.10

(AIC = 283.3)
Model 1.11

(AIC = 285.0)
Model 1.12

(AIC = 285.3)

 Estimate SE  Estimate SE  Estimate SE  

Sty C 5.21 0.44 *** 5.17 0.45 *** 5.18 0.45 ***

Sty Fa 8.44 0.60 *** 8.11 0.70 *** 7.78 1.03 ***

Sty Fe 6.88 0.90 *** 6.41 1.03 *** 6.76 0.92 ***

Sty Fl 12.16 1.28 *** 12.04 1.29 *** 12.15 1.29 ***

Sty Fj 7.08 0.80 *** 6.46 1.03 *** 6.59 1.02 ***

Sty Fk 6.33 1.28 *** 5.87 1.37 *** 5.75 1.48 ***

Sty Fd 6.85 0.74 *** 6.61 0.78 *** 6.66 0.77 ***

Sty Fs 7.14 0.57 *** 7.06 0.58 *** 7.08 0.58 ***

Sty Pb 6.35 1.28 *** 6.32 1.29 *** 6.35 1.29 ***

Sty Pg 8.51 0.71 *** 8.49 0.71 *** 8.49 0.71 ***

Sde 2.20 0.60 *** 2.10 0.61 *** 2.18 0.60 ***

Slo - - - 0.03 0.03  - - -

Elv - - - - -  0.15 0.19  

Confidence level: *** = 0.001, ** = 0.01, * = 0.05; Model 1.10: SI ~ a × Sty + b × Sde, Model 
1.11: SI ~ a × Sty + b × Slo, Model 1.12: SI ~ a × Sty + b × Elv
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15 m above the canopy (Appendix 7). The model 
showed that Hdom, WS3 and Slo were associated 
with high damage probabilities, whereas stand 
age and elevation seemed to be less susceptible 
(Table 6). Stands growing on soil type Fs were 
more likely to be stable against wind damage 
than those on soil type Fd (there was a significant 
difference, between the two soil types, p < 0.5). 
In comparison with other explanatory variables, 
wind speed (WS3) was less important, with the 

lowest overall importance value of 1.68. Since 
it had the lowest AIC value, the south direction 
was considered to be the wind flow direction, 
which was used for predicting wind speed when 
validating the final model.

DISCUSSION

The variable Hdom was applied to create the 
growth curve and SI because Hdom is stable and 

Figure 3 The importance of variables (a) and ROC curves (b) of the model 
created using Random Forest algorithm
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not dependent on silviculture, e.g., thinning 
(Burkhart & Tomes 2012, Beadle et al. 2013). 
This study on the growth of Acacia hybrid 
plantation stands confirmed that the Chapman–
Richards equation had a good performance for 
growth curve. Krisnawati et al. (2010) concluded 
that the Chapman–Richards function is one of 
the most appropriate equations to establish a 
growth yield table for forest trees. Several growth 
models and yield tables have been developed 
for the whole of Vietnam, however, they require 
adjustment when applied at a specific locations 
(Hung et al. 2016). The current study provides a 
detailed height growth curve and SI, adapted to 
the current forest management of the research 
site.
 Change vector analysis has been widely 
used to study the spatio-temporal dynamics 
of land cover (Sangpradid et al. 2018). By 
examining five components extracted from the 
LANDSAT 8 images, the study provided a good 
qualitative classification for estimating damaged 
or undamaged areas, with high overall accuracy 
(95.83%) and kappa index (0.88). Factors that 
often cause error in the image classification 
process were excluded, such as logging, forest 
disease and forest fire, as there were no records of 
these occurrences at the research site according 
to reports by PFD and the local government. Only 
one forest patch (no. 592) was excluded because 
more than 50% was damaged by typhoons.
 Using the classification methods to integrate 
image information from multi-spectral bands and 
components of indexes often results in higher 
accuracy and less bias, compared to using a single 
band. This is because the feature characteristics 

in different wavebands can be reflected more 
realistically (Hichri et al. 2013). In the current 
findings, VCNDVI had the greatest effect on mean 
decrease, in accuracy measure (Figure 3a), 
followed by changeIn1 and changeIn2. This 
finding is in agreement with Polykretis (2020) 
who applied change vector analysis to detect land-
use change, and found that the most accurate 
outputs were obtained from the combination 
of NDVI. The results from image classification, 
therefore, meet the aim of detecting damaged or 
undamaged areas caused by the typhoon.
 Classification performance tests showed that 
the wind damage probability model performed 
moderately well. The model results indicated a 
higher probability of wind disturbance for taller 
trees/stands, higher wind speeds, and forests on 
higher slopes. The inclusion of stand age had a 
negative effect on damage probability (p < 0.05). 
Acacia hybrid has rapid growth in height during 
the early stage, and slows down with maturity 
(Kha et al. 2012). Thus, older trees naturally have 
lower slender (H/DBH). Increasing stand age, 
therefore, may lead to a decrease in wind damage 
because of the decline in H/DBH (Gardiner et al. 
2013). The results showed that taller stands (tree 
height) were more likely sensitive to wind damage 
(p < 0.05). If a tree is taller, it is more likely to 
fall over because it is less stable (Dhubhain et al. 
2001). In the current study, Hdom was selected 
instead of the mean tree height of a stand 
because the highest trees are more susceptible to 
wind-induced damage. Gardiner (2013) reported 
that height (in particular, dominant height) was 
better than other factors as a measure of wind 
vulnerability.

Table 6 Estimated model coefficients of the generalised linear model 
for the probability of occurrence of wind damage

Explanatory variable
Height above canopy at 15 m (AIC = 309.66)

Coefficient SE Significance

(Intercept) 8.869 2.946 0.003**

Sty Fs
§ -0.809 0.334 0.015*

A -0.919 0.329 0.005**

Hdom 3.009 1.050 0.004**

WS3 0.252 0.152 0.097.

Slo 0.043 0.021 0.044*

Ele -0.007 0.002 0.003*

§: soil type Fd was used as the basis for comparison; confidence level: *** = 
0.001, ** = 0.01, * = 0.05, ‘.’ = 0.1
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 The current study found a significant wind 
speed predictor (WS3 at 15 m high above 
canopy), with increasing WS3 leading to a 
greater probability of wind damage. Higher 
wind speed causes more damage in a stand 
(Schindler et al. 2012). Thus, WS3 has two 
functions:  i) it represents maximum wind 
speed within a period, and thus, indicates the 
maximum force of high wind speed acting on a 
stand, and ii) it contains standard deviation of 
wind speed, therefore, illustrating fluctuations 
in wind velocity or wind turbulence. The results 
concurred with the findings of Uchida (2008), 
in which the forest stands were damaged 
not only by wind speed enhanced by terrain 
conditions, but also by the fluctuations in wind 
velocity. The most suitable wind direction was 
found to be from the south. This agrees with 
the records of wind direction provided by Dong 
Ha meteorological station (~30 km from the 
research site).
 Concerning soil type, the results showed that 
the stands on Fs were more likely to be stable 
in a tropical storm than those on Fd (p < 0.05). 
Soil conditions and soil types are known to be 
the primary factor affecting root plate stability 
(Gardiner et al. 2000, Kamimura et al. 2012). 
To validate the model result on the effect of 
soil type, the physical stability TMmax of Acacia 
hybrid were compared on both soil types. The 
data analysis revealed that TMmax in the model 
of tree failure was governed by tree size (squared 
DBH multiplied by H) and soil type, and the 
stability of trees in Fd was smaller than those in 
Fs with the same tree size (Figure 4). Therefore, 
the effect of soil type on modeling forest wind 
damage was supported by this mechanistic 
measurement. The coincidence of the statistical 
model from satellite image with mechanistic 
measurement suggested the effectiveness of the 
model as the evaluating factors related to the 
wind damage.

CONCLUSION

The current study analysed the wind damage 
probability in a complex terrain for Acacia hybrid 
plantation forests in Vietnam by integrating 
an aerodynamics model for simulating wind 
speed, wind disturbance records and GIS 
data. Based on the survey information of wind 
damage caused by Typhoon Doksuri in 2017, 
the wind damage probability was estimated at 

landscape level. The results showed that the 
wind hazard ratio of Acacia hybrid plantations 
was associated with stand characteristics (stand 
age, stand height and soil type), wind velocity, 
and topographic characteristics (elevation, 
slope). Higher damage probabilities were 
found in stands with taller tree height, on 
higher slopes, and with higher wind speed. The 
combination of GIS, satellite images and a wind 
condition prediction model enabled to analyse 
wind damage prediction concerning stand and 
topography. Another finding in the current 
study showed that the pulling experiment gave 
clear evidence of the effect of soil type on wind 
risk model.  The government of Vietnam aims to 
prolong the rotation of Acacia hybrid plantations 
to provide log and saw wood, which requires 
a long prediction associated with strong wind 
events, especially tropical storms and typhoons. 
The results on the effect of stand age and stand 
height on the model of wind risk were important 
findings to establish suitable models for this 
purpose.
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Appendix 2 Height for vegetation and land-use types in the research site

Covered types Height (m) Note

Other lands 4 Construction, house

Bare land type A 2 Bare land with a small brush

Bare land type B 8 Bare land with shrub and bamboo

New plantation 3 New planting forest within 1 year

Water face 0 River, pond, or lake

Agriculture 3 Farm or crop

Natural forest (poor) 15 Poor volume stocks

Natural forest (medium) 20 Medium volume stocks

Natural forest (rich) 23 Rich volume stocks

Other forest plantation
- Pinus (age of 14)
- Rubber (age of 15)

 
18
14

Planted area covered by Pinus caribea
Planted area covered by Hevea brasiliensis

Appendix 1 The LANDSAT-08 image’s properties in the study

Before Doksuri occurred After Doksuri occurred

Sensor OLI/TIRS combined OLI/TIRS combined

Satellite 08 08

Processing correction level L1TP - terrain precision correction L1TP - terrain precision correction

Path 125 125

Row 048 048

Acquisition time 2017/06/06 2018/04/22

Processing time 2017/06/16 2018/05/02

Collection number 01 01

Collection category Tier 1 Tier 1

Total bands 11 11

Resolution 30 meters for bands 1 to 7, 9
15 meters for bands 8
100 meters for band 10, 11

30 meters for bands 1 to 7, 9
15 meters for bands 8
100 meters for band 10, 11

Sence size 170 km north-south and 183 km east-west 170 km north-south and 183 km east-west
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Appendix 3 Parameter estimation for six growth models approaching Bayesian interference respecting 
to Acacia plantation in the study area

Equation forms Parameter Mean 2.5% 50% 97.5% rhat

 (1. 1) a 4.31E + 307 3.54 2.93E + 307 1.342909e + 308 NaN

b 471.16 -0.52 706.41 707.92 426.25

c -0.24 -1.01 0 0 3.23

 (1.2)
WAIC = 588.5

a 7.62E + 307 3.84E + 306 7.22E + 307 1.67e + 308 NaN

b 481.95 22.6 706.55 708.03 108.02

c 5.9 0 0 24.4 3.48

(1.31)
WAIC = 389.9

a 23.6 16.07 23.18 32.41 1.08

b -0.04 -0.13 -0.03 -0.01 1.03

c -1.04 -1.5 -1.06 -0.44 1.04

(1.32)
WAIC = 392.1

a 22.77 15.62 22.35 32.8 1.03

b -0.05 -0.16 -0.04 -0.01 1.01

c 0.52 0.4 0.5 0.77 1.01

(1.4) a 4.64e + 307 1.04e + 01 3.44e + 307 1.54e + 308 NaN

b 1.71e + 17 -1.25E + 17 7.07e + 02 1.26e + 18 3.07

c 3.87e + 16 0.00 0.00 2.62e + 17 1.61

(1.5) a 3.27e + 307 0.01 743.19 1.66e + 308 NaN

b -7.84 -203.06 0.21 135.86 2.33

c -54.94 -188.52 -21.66 4.45 4.41

Note: rhat is the potential scale reduction factor on split chains

Appendix 4 The Hdom of Acacia hybrid plantation forest (referred to SI) in the research site

Legend
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Appendix 5 The distribution of damaged and undamaged points in the validation dataset

Legend
Damage

Nodamage

Appendix 6 Akaike information criterion (AIC) for predicting wind damage probability with wind 
direction from south to north at 15 m above the canopy

Model Model form AIC

1.6 logit(p) ~ a + b × A + c × Hdom + d × WS3 315.59

1.7 logit(p) ~ a + b × A + c × Hdom + d × turblence intensity 316.92

1.8 logit(p) ~ a + b × A + c × Hdom + d × Elv + e ×Slo 310.07

1.9 logit(p) ~ a + b × A + c × Hdom + e × turblence intensity + f × Elv + g × Slo 311.14

1.9 logit(p) ~ a + b × A + c × Hdom + d × WS3  + f × Elv + g × Slo 309.67

1.9 logit(p) ~ a + b × A +c × Hdom +d × WS3 + e × turblence intensity + f × Elv + g × Slo 311.04

Hdom = dominant height; WS3 = wind speed, Elv = elevation, Slo = slope; p is the probability of a stand 
being disturbed, a, b, c, d, e, f, g are the parameters of the model
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Appendix 7 Wind speed distribution from south to north predicted by RIAM-COMPACT at 15 m above the 
canopy
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